test / app.py
sbstagiare's picture
Update app.py
e4fa2f7 verified
import gradio as gr
import subprocess
import threading
import time
from huggingface_hub import InferenceClient
# Définir la fonction `respond` avant de l'utiliser
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
def respond(
message,
history: list[tuple[str, str]],
system_message,
max_tokens,
temperature,
top_p,
):
messages = [{"role": "system", "content": system_message}]
for val in history:
if val[0]:
messages.append({"role": "user", "content": val[0]})
if val[1]:
messages.append({"role": "assistant", "content": val[1]})
messages.append({"role": "user", "content": message})
response = ""
for message in client.chat_completion(
messages,
max_tokens=max_tokens,
stream=True,
temperature=temperature,
top_p=top_p,
):
token = message.choices[0].delta.content
response += token
yield response
# Fonction pour lancer train.py en arrière-plan
def train_model():
process = subprocess.Popen(["python", "train.py"], stdout=subprocess.PIPE, stderr=subprocess.PIPE)
stdout, stderr = process.communicate()
return stdout.decode() + "\n" + stderr.decode() # Retourne les logs d'entraînement
# Lancer l'entraînement en arrière-plan
threading.Thread(target=train_model, daemon=True).start()
# ✅ Ajout d'un délai pour éviter les conflits au démarrage
time.sleep(3)
# Interface Gradio
demo = gr.ChatInterface(
respond,
additional_inputs=[
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"),
],
)
if __name__ == "__main__":
demo.launch()