Spaces:
Sleeping
Sleeping
import gradio as gr | |
import subprocess | |
import threading | |
import time | |
from huggingface_hub import InferenceClient | |
# Définir la fonction `respond` avant de l'utiliser | |
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta") | |
def respond( | |
message, | |
history: list[tuple[str, str]], | |
system_message, | |
max_tokens, | |
temperature, | |
top_p, | |
): | |
messages = [{"role": "system", "content": system_message}] | |
for val in history: | |
if val[0]: | |
messages.append({"role": "user", "content": val[0]}) | |
if val[1]: | |
messages.append({"role": "assistant", "content": val[1]}) | |
messages.append({"role": "user", "content": message}) | |
response = "" | |
for message in client.chat_completion( | |
messages, | |
max_tokens=max_tokens, | |
stream=True, | |
temperature=temperature, | |
top_p=top_p, | |
): | |
token = message.choices[0].delta.content | |
response += token | |
yield response | |
# Fonction pour lancer train.py en arrière-plan | |
def train_model(): | |
process = subprocess.Popen(["python", "train.py"], stdout=subprocess.PIPE, stderr=subprocess.PIPE) | |
stdout, stderr = process.communicate() | |
return stdout.decode() + "\n" + stderr.decode() # Retourne les logs d'entraînement | |
# Lancer l'entraînement en arrière-plan | |
threading.Thread(target=train_model, daemon=True).start() | |
# ✅ Ajout d'un délai pour éviter les conflits au démarrage | |
time.sleep(3) | |
# Interface Gradio | |
demo = gr.ChatInterface( | |
respond, | |
additional_inputs=[ | |
gr.Textbox(value="You are a friendly Chatbot.", label="System message"), | |
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), | |
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), | |
gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"), | |
], | |
) | |
if __name__ == "__main__": | |
demo.launch() | |