Spaces:
Paused
Paused
# Ultralytics YOLO 🚀, GPL-3.0 license | |
import json | |
from collections import defaultdict | |
from pathlib import Path | |
import torch | |
from omegaconf import OmegaConf # noqa | |
from tqdm import tqdm | |
from ultralytics.nn.autobackend import AutoBackend | |
from ultralytics.yolo.data.utils import check_dataset, check_dataset_yaml | |
from ultralytics.yolo.utils import DEFAULT_CONFIG, LOGGER, RANK, SETTINGS, TQDM_BAR_FORMAT, callbacks | |
from ultralytics.yolo.utils.checks import check_imgsz | |
from ultralytics.yolo.utils.files import increment_path | |
from ultralytics.yolo.utils.ops import Profile | |
from ultralytics.yolo.utils.torch_utils import de_parallel, select_device, smart_inference_mode | |
class BaseValidator: | |
""" | |
BaseValidator | |
A base class for creating validators. | |
Attributes: | |
dataloader (DataLoader): Dataloader to use for validation. | |
pbar (tqdm): Progress bar to update during validation. | |
logger (logging.Logger): Logger to use for validation. | |
args (OmegaConf): Configuration for the validator. | |
model (nn.Module): Model to validate. | |
data (dict): Data dictionary. | |
device (torch.device): Device to use for validation. | |
batch_i (int): Current batch index. | |
training (bool): Whether the model is in training mode. | |
speed (float): Batch processing speed in seconds. | |
jdict (dict): Dictionary to store validation results. | |
save_dir (Path): Directory to save results. | |
""" | |
def __init__(self, dataloader=None, save_dir=None, pbar=None, logger=None, args=None): | |
""" | |
Initializes a BaseValidator instance. | |
Args: | |
dataloader (torch.utils.data.DataLoader): Dataloader to be used for validation. | |
save_dir (Path): Directory to save results. | |
pbar (tqdm.tqdm): Progress bar for displaying progress. | |
logger (logging.Logger): Logger to log messages. | |
args (OmegaConf): Configuration for the validator. | |
""" | |
self.dataloader = dataloader | |
self.pbar = pbar | |
self.logger = logger or LOGGER | |
self.args = args or OmegaConf.load(DEFAULT_CONFIG) | |
self.model = None | |
self.data = None | |
self.device = None | |
self.batch_i = None | |
self.training = True | |
self.speed = None | |
self.jdict = None | |
project = self.args.project or Path(SETTINGS['runs_dir']) / self.args.task | |
name = self.args.name or f"{self.args.mode}" | |
self.save_dir = save_dir or increment_path(Path(project) / name, | |
exist_ok=self.args.exist_ok if RANK in {-1, 0} else True) | |
(self.save_dir / 'labels' if self.args.save_txt else self.save_dir).mkdir(parents=True, exist_ok=True) | |
if self.args.conf is None: | |
self.args.conf = 0.001 # default conf=0.001 | |
self.callbacks = defaultdict(list, {k: [v] for k, v in callbacks.default_callbacks.items()}) # add callbacks | |
def __call__(self, trainer=None, model=None): | |
""" | |
Supports validation of a pre-trained model if passed or a model being trained | |
if trainer is passed (trainer gets priority). | |
""" | |
self.training = trainer is not None | |
if self.training: | |
self.device = trainer.device | |
self.data = trainer.data | |
model = trainer.ema.ema or trainer.model | |
self.args.half = self.device.type != 'cpu' # force FP16 val during training | |
model = model.half() if self.args.half else model.float() | |
self.model = model | |
self.loss = torch.zeros_like(trainer.loss_items, device=trainer.device) | |
self.args.plots = trainer.epoch == trainer.epochs - 1 # always plot final epoch | |
model.eval() | |
else: | |
callbacks.add_integration_callbacks(self) | |
self.run_callbacks('on_val_start') | |
assert model is not None, "Either trainer or model is needed for validation" | |
self.device = select_device(self.args.device, self.args.batch) | |
self.args.half &= self.device.type != 'cpu' | |
model = AutoBackend(model, device=self.device, dnn=self.args.dnn, fp16=self.args.half) | |
self.model = model | |
stride, pt, jit, engine = model.stride, model.pt, model.jit, model.engine | |
imgsz = check_imgsz(self.args.imgsz, stride=stride) | |
if engine: | |
self.args.batch = model.batch_size | |
else: | |
self.device = model.device | |
if not pt and not jit: | |
self.args.batch = 1 # export.py models default to batch-size 1 | |
self.logger.info( | |
f'Forcing --batch-size 1 square inference (1,3,{imgsz},{imgsz}) for non-PyTorch models') | |
if isinstance(self.args.data, str) and self.args.data.endswith(".yaml"): | |
self.data = check_dataset_yaml(self.args.data) | |
else: | |
self.data = check_dataset(self.args.data) | |
if self.device.type == 'cpu': | |
self.args.workers = 0 # faster CPU val as time dominated by inference, not dataloading | |
self.dataloader = self.dataloader or \ | |
self.get_dataloader(self.data.get("val") or self.data.set("test"), self.args.batch) | |
model.eval() | |
model.warmup(imgsz=(1 if pt else self.args.batch, 3, imgsz, imgsz)) # warmup | |
dt = Profile(), Profile(), Profile(), Profile() | |
n_batches = len(self.dataloader) | |
desc = self.get_desc() | |
# NOTE: keeping `not self.training` in tqdm will eliminate pbar after segmentation evaluation during training, | |
# which may affect classification task since this arg is in yolov5/classify/val.py. | |
# bar = tqdm(self.dataloader, desc, n_batches, not self.training, bar_format=TQDM_BAR_FORMAT) | |
bar = tqdm(self.dataloader, desc, n_batches, bar_format=TQDM_BAR_FORMAT) | |
self.init_metrics(de_parallel(model)) | |
self.jdict = [] # empty before each val | |
for batch_i, batch in enumerate(bar): | |
self.run_callbacks('on_val_batch_start') | |
self.batch_i = batch_i | |
# pre-process | |
with dt[0]: | |
batch = self.preprocess(batch) | |
# inference | |
with dt[1]: | |
preds = model(batch["img"]) | |
# loss | |
with dt[2]: | |
if self.training: | |
self.loss += trainer.criterion(preds, batch)[1] | |
# pre-process predictions | |
with dt[3]: | |
preds = self.postprocess(preds) | |
self.update_metrics(preds, batch) | |
if self.args.plots and batch_i < 3: | |
self.plot_val_samples(batch, batch_i) | |
self.plot_predictions(batch, preds, batch_i) | |
self.run_callbacks('on_val_batch_end') | |
stats = self.get_stats() | |
self.check_stats(stats) | |
self.print_results() | |
self.speed = tuple(x.t / len(self.dataloader.dataset) * 1E3 for x in dt) # speeds per image | |
self.run_callbacks('on_val_end') | |
if self.training: | |
model.float() | |
results = {**stats, **trainer.label_loss_items(self.loss.cpu() / len(self.dataloader), prefix="val")} | |
return {k: round(float(v), 5) for k, v in results.items()} # return results as 5 decimal place floats | |
else: | |
self.logger.info('Speed: %.1fms pre-process, %.1fms inference, %.1fms loss, %.1fms post-process per image' % | |
self.speed) | |
if self.args.save_json and self.jdict: | |
with open(str(self.save_dir / "predictions.json"), 'w') as f: | |
self.logger.info(f"Saving {f.name}...") | |
json.dump(self.jdict, f) # flatten and save | |
stats = self.eval_json(stats) # update stats | |
return stats | |
def run_callbacks(self, event: str): | |
for callback in self.callbacks.get(event, []): | |
callback(self) | |
def get_dataloader(self, dataset_path, batch_size): | |
raise NotImplementedError("get_dataloader function not implemented for this validator") | |
def preprocess(self, batch): | |
return batch | |
def postprocess(self, preds): | |
return preds | |
def init_metrics(self, model): | |
pass | |
def update_metrics(self, preds, batch): | |
pass | |
def get_stats(self): | |
return {} | |
def check_stats(self, stats): | |
pass | |
def print_results(self): | |
pass | |
def get_desc(self): | |
pass | |
def metric_keys(self): | |
return [] | |
# TODO: may need to put these following functions into callback | |
def plot_val_samples(self, batch, ni): | |
pass | |
def plot_predictions(self, batch, preds, ni): | |
pass | |
def pred_to_json(self, preds, batch): | |
pass | |
def eval_json(self, stats): | |
pass | |