Spaces:
Paused
Paused
# Ultralytics YOLO 🚀, GPL-3.0 license | |
""" | |
Run prediction on images, videos, directories, globs, YouTube, webcam, streams, etc. | |
Usage - sources: | |
$ yolo task=... mode=predict model=s.pt --source 0 # webcam | |
img.jpg # image | |
vid.mp4 # video | |
screen # screenshot | |
path/ # directory | |
list.txt # list of images | |
list.streams # list of streams | |
'path/*.jpg' # glob | |
'https://youtu.be/Zgi9g1ksQHc' # YouTube | |
'rtsp://example.com/media.mp4' # RTSP, RTMP, HTTP stream | |
Usage - formats: | |
$ yolo task=... mode=predict --weights yolov8n.pt # PyTorch | |
yolov8n.torchscript # TorchScript | |
yolov8n.onnx # ONNX Runtime or OpenCV DNN with --dnn | |
yolov8n_openvino_model # OpenVINO | |
yolov8n.engine # TensorRT | |
yolov8n.mlmodel # CoreML (macOS-only) | |
yolov8n_saved_model # TensorFlow SavedModel | |
yolov8n.pb # TensorFlow GraphDef | |
yolov8n.tflite # TensorFlow Lite | |
yolov8n_edgetpu.tflite # TensorFlow Edge TPU | |
yolov8n_paddle_model # PaddlePaddle | |
""" | |
import platform | |
from collections import defaultdict | |
from pathlib import Path | |
import cv2 | |
from ultralytics.nn.autobackend import AutoBackend | |
from ultralytics.yolo.configs import get_config | |
from ultralytics.yolo.data.dataloaders.stream_loaders import LoadImages, LoadScreenshots, LoadStreams | |
from ultralytics.yolo.data.utils import IMG_FORMATS, VID_FORMATS | |
from ultralytics.yolo.utils import DEFAULT_CONFIG, LOGGER, SETTINGS, callbacks, colorstr, ops | |
from ultralytics.yolo.utils.checks import check_file, check_imgsz, check_imshow | |
from ultralytics.yolo.utils.files import increment_path | |
from ultralytics.yolo.utils.torch_utils import select_device, smart_inference_mode | |
class BasePredictor: | |
""" | |
BasePredictor | |
A base class for creating predictors. | |
Attributes: | |
args (OmegaConf): Configuration for the predictor. | |
save_dir (Path): Directory to save results. | |
done_setup (bool): Whether the predictor has finished setup. | |
model (nn.Module): Model used for prediction. | |
data (dict): Data configuration. | |
device (torch.device): Device used for prediction. | |
dataset (Dataset): Dataset used for prediction. | |
vid_path (str): Path to video file. | |
vid_writer (cv2.VideoWriter): Video writer for saving video output. | |
annotator (Annotator): Annotator used for prediction. | |
data_path (str): Path to data. | |
""" | |
def __init__(self, config=DEFAULT_CONFIG, overrides=None): | |
""" | |
Initializes the BasePredictor class. | |
Args: | |
config (str, optional): Path to a configuration file. Defaults to DEFAULT_CONFIG. | |
overrides (dict, optional): Configuration overrides. Defaults to None. | |
""" | |
if overrides is None: | |
overrides = {} | |
self.args = get_config(config, overrides) | |
project = self.args.project or Path(SETTINGS['runs_dir']) / self.args.task | |
name = self.args.name or f"{self.args.mode}" | |
self.save_dir = increment_path(Path(project) / name, exist_ok=self.args.exist_ok) | |
if self.args.save: | |
(self.save_dir / 'labels' if self.args.save_txt else self.save_dir).mkdir(parents=True, exist_ok=True) | |
if self.args.conf is None: | |
self.args.conf = 0.25 # default conf=0.25 | |
self.done_setup = False | |
# Usable if setup is done | |
self.model = None | |
self.data = self.args.data # data_dict | |
self.device = None | |
self.dataset = None | |
self.vid_path, self.vid_writer = None, None | |
self.annotator = None | |
self.data_path = None | |
self.callbacks = defaultdict(list, {k: [v] for k, v in callbacks.default_callbacks.items()}) # add callbacks | |
callbacks.add_integration_callbacks(self) | |
def preprocess(self, img): | |
pass | |
def get_annotator(self, img): | |
raise NotImplementedError("get_annotator function needs to be implemented") | |
def write_results(self, pred, batch, print_string): | |
raise NotImplementedError("print_results function needs to be implemented") | |
def postprocess(self, preds, img, orig_img): | |
return preds | |
def setup(self, source=None, model=None): | |
# source | |
source = str(source if source is not None else self.args.source) | |
is_file = Path(source).suffix[1:] in (IMG_FORMATS + VID_FORMATS) | |
is_url = source.lower().startswith(('rtsp://', 'rtmp://', 'http://', 'https://')) | |
webcam = source.isnumeric() or source.endswith('.streams') or (is_url and not is_file) | |
screenshot = source.lower().startswith('screen') | |
if is_url and is_file: | |
source = check_file(source) # download | |
# model | |
device = select_device(self.args.device) | |
model = model or self.args.model | |
self.args.half &= device.type != 'cpu' # half precision only supported on CUDA | |
model = AutoBackend(model, device=device, dnn=self.args.dnn, fp16=self.args.half) | |
stride, pt = model.stride, model.pt | |
imgsz = check_imgsz(self.args.imgsz, stride=stride) # check image size | |
# Dataloader | |
bs = 1 # batch_size | |
if webcam: | |
self.args.show = check_imshow(warn=True) | |
self.dataset = LoadStreams(source, | |
imgsz=imgsz, | |
stride=stride, | |
auto=pt, | |
transforms=getattr(model.model, 'transforms', None), | |
vid_stride=self.args.vid_stride) | |
bs = len(self.dataset) | |
elif screenshot: | |
self.dataset = LoadScreenshots(source, | |
imgsz=imgsz, | |
stride=stride, | |
auto=pt, | |
transforms=getattr(model.model, 'transforms', None)) | |
else: | |
self.dataset = LoadImages(source, | |
imgsz=imgsz, | |
stride=stride, | |
auto=pt, | |
transforms=getattr(model.model, 'transforms', None), | |
vid_stride=self.args.vid_stride) | |
self.vid_path, self.vid_writer = [None] * bs, [None] * bs | |
model.warmup(imgsz=(1 if pt or model.triton else bs, 3, *imgsz)) # warmup | |
self.model = model | |
self.webcam = webcam | |
self.screenshot = screenshot | |
self.imgsz = imgsz | |
self.done_setup = True | |
self.device = device | |
return model | |
def __call__(self, source=None, model=None): | |
self.run_callbacks("on_predict_start") | |
model = self.model if self.done_setup else self.setup(source, model) | |
model.eval() | |
self.seen, self.windows, self.dt = 0, [], (ops.Profile(), ops.Profile(), ops.Profile()) | |
self.all_outputs = [] | |
for batch in self.dataset: | |
self.run_callbacks("on_predict_batch_start") | |
path, im, im0s, vid_cap, s = batch | |
visualize = increment_path(self.save_dir / Path(path).stem, mkdir=True) if self.args.visualize else False | |
with self.dt[0]: | |
im = self.preprocess(im) | |
if len(im.shape) == 3: | |
im = im[None] # expand for batch dim | |
# Inference | |
with self.dt[1]: | |
preds = model(im, augment=self.args.augment, visualize=visualize) | |
# postprocess | |
with self.dt[2]: | |
preds = self.postprocess(preds, im, im0s) | |
for i in range(len(im)): | |
if self.webcam: | |
path, im0s = path[i], im0s[i] | |
p = Path(path) | |
res = self.write_results(i, preds, (p, im, im0s)) | |
s += res[0] | |
return res[1] | |
if self.args.show: | |
self.show(p) | |
if self.args.save: | |
self.save_preds(vid_cap, i, str(self.save_dir / p.name)) | |
# Print time (inference-only) | |
LOGGER.info(f"{s}{'' if len(preds) else '(no detections), '}{self.dt[1].dt * 1E3:.1f}ms") | |
self.run_callbacks("on_predict_batch_end") | |
# Print results | |
t = tuple(x.t / self.seen * 1E3 for x in self.dt) # speeds per image | |
LOGGER.info( | |
f'Speed: %.1fms pre-process, %.1fms inference, %.1fms postprocess per image at shape {(1, 3, *self.imgsz)}' | |
% t) | |
if self.args.save_txt or self.args.save: | |
s = f"\n{len(list(self.save_dir.glob('labels/*.txt')))} labels saved to {self.save_dir / 'labels'}" if self.args.save_txt else '' | |
LOGGER.info(f"Results saved to {colorstr('bold', self.save_dir)}{s}") | |
self.run_callbacks("on_predict_end") | |
return self.all_outputs | |
def show(self, p): | |
im0 = self.annotator.result() | |
if platform.system() == 'Linux' and p not in self.windows: | |
self.windows.append(p) | |
cv2.namedWindow(str(p), cv2.WINDOW_NORMAL | cv2.WINDOW_KEEPRATIO) # allow window resize (Linux) | |
cv2.resizeWindow(str(p), im0.shape[1], im0.shape[0]) | |
cv2.imshow(str(p), im0) | |
cv2.waitKey(1) # 1 millisecond | |
def save_preds(self, vid_cap, idx, save_path): | |
im0 = self.annotator.result() | |
# save imgs | |
if self.dataset.mode == 'image': | |
cv2.imwrite(save_path, im0) | |
else: # 'video' or 'stream' | |
if self.vid_path[idx] != save_path: # new video | |
self.vid_path[idx] = save_path | |
if isinstance(self.vid_writer[idx], cv2.VideoWriter): | |
self.vid_writer[idx].release() # release previous video writer | |
if vid_cap: # video | |
fps = vid_cap.get(cv2.CAP_PROP_FPS) | |
w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH)) | |
h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT)) | |
else: # stream | |
fps, w, h = 30, im0.shape[1], im0.shape[0] | |
save_path = str(Path(save_path).with_suffix('.mp4')) # force *.mp4 suffix on results videos | |
self.vid_writer[idx] = cv2.VideoWriter(save_path, cv2.VideoWriter_fourcc(*'mp4v'), fps, (w, h)) | |
self.vid_writer[idx].write(im0) | |
def run_callbacks(self, event: str): | |
for callback in self.callbacks.get(event, []): | |
callback(self) | |