File size: 30,711 Bytes
8b7211f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
# Ultralytics YOLO 🚀, GPL-3.0 license

import math
import random
from copy import deepcopy

import cv2
import numpy as np
import torch
import torchvision.transforms as T

from ..utils import LOGGER, colorstr
from ..utils.checks import check_version
from ..utils.instance import Instances
from ..utils.metrics import bbox_ioa
from ..utils.ops import segment2box
from .utils import IMAGENET_MEAN, IMAGENET_STD, polygons2masks, polygons2masks_overlap


# TODO: we might need a BaseTransform to make all these augments be compatible with both classification and semantic
class BaseTransform:

    def __init__(self) -> None:
        pass

    def apply_image(self, labels):
        pass

    def apply_instances(self, labels):
        pass

    def apply_semantic(self, labels):
        pass

    def __call__(self, labels):
        self.apply_image(labels)
        self.apply_instances(labels)
        self.apply_semantic(labels)


class Compose:

    def __init__(self, transforms):
        self.transforms = transforms

    def __call__(self, data):
        for t in self.transforms:
            data = t(data)
        return data

    def append(self, transform):
        self.transforms.append(transform)

    def tolist(self):
        return self.transforms

    def __repr__(self):
        format_string = f"{self.__class__.__name__}("
        for t in self.transforms:
            format_string += "\n"
            format_string += f"    {t}"
        format_string += "\n)"
        return format_string


class BaseMixTransform:
    """This implementation is from mmyolo"""

    def __init__(self, dataset, pre_transform=None, p=0.0) -> None:
        self.dataset = dataset
        self.pre_transform = pre_transform
        self.p = p

    def __call__(self, labels):
        if random.uniform(0, 1) > self.p:
            return labels

        # get index of one or three other images
        indexes = self.get_indexes()
        if isinstance(indexes, int):
            indexes = [indexes]

        # get images information will be used for Mosaic or MixUp
        mix_labels = [self.dataset.get_label_info(i) for i in indexes]

        if self.pre_transform is not None:
            for i, data in enumerate(mix_labels):
                mix_labels[i] = self.pre_transform(data)
        labels["mix_labels"] = mix_labels

        # Mosaic or MixUp
        labels = self._mix_transform(labels)
        labels.pop("mix_labels", None)
        return labels

    def _mix_transform(self, labels):
        raise NotImplementedError

    def get_indexes(self):
        raise NotImplementedError


class Mosaic(BaseMixTransform):
    """Mosaic augmentation.
    Args:
        imgsz (Sequence[int]): Image size after mosaic pipeline of single
            image. The shape order should be (height, width).
            Default to (640, 640).
    """

    def __init__(self, dataset, imgsz=640, p=1.0, border=(0, 0)):
        assert 0 <= p <= 1.0, "The probability should be in range [0, 1]. " f"got {p}."
        super().__init__(dataset=dataset, p=p)
        self.dataset = dataset
        self.imgsz = imgsz
        self.border = border

    def get_indexes(self):
        return [random.randint(0, len(self.dataset) - 1) for _ in range(3)]

    def _mix_transform(self, labels):
        mosaic_labels = []
        assert labels.get("rect_shape", None) is None, "rect and mosaic is exclusive."
        assert len(labels.get("mix_labels", [])) > 0, "There are no other images for mosaic augment."
        s = self.imgsz
        yc, xc = (int(random.uniform(-x, 2 * s + x)) for x in self.border)  # mosaic center x, y
        for i in range(4):
            labels_patch = (labels if i == 0 else labels["mix_labels"][i - 1]).copy()
            # Load image
            img = labels_patch["img"]
            h, w = labels_patch["resized_shape"]

            # place img in img4
            if i == 0:  # top left
                img4 = np.full((s * 2, s * 2, img.shape[2]), 114, dtype=np.uint8)  # base image with 4 tiles
                x1a, y1a, x2a, y2a = max(xc - w, 0), max(yc - h, 0), xc, yc  # xmin, ymin, xmax, ymax (large image)
                x1b, y1b, x2b, y2b = w - (x2a - x1a), h - (y2a - y1a), w, h  # xmin, ymin, xmax, ymax (small image)
            elif i == 1:  # top right
                x1a, y1a, x2a, y2a = xc, max(yc - h, 0), min(xc + w, s * 2), yc
                x1b, y1b, x2b, y2b = 0, h - (y2a - y1a), min(w, x2a - x1a), h
            elif i == 2:  # bottom left
                x1a, y1a, x2a, y2a = max(xc - w, 0), yc, xc, min(s * 2, yc + h)
                x1b, y1b, x2b, y2b = w - (x2a - x1a), 0, w, min(y2a - y1a, h)
            elif i == 3:  # bottom right
                x1a, y1a, x2a, y2a = xc, yc, min(xc + w, s * 2), min(s * 2, yc + h)
                x1b, y1b, x2b, y2b = 0, 0, min(w, x2a - x1a), min(y2a - y1a, h)

            img4[y1a:y2a, x1a:x2a] = img[y1b:y2b, x1b:x2b]  # img4[ymin:ymax, xmin:xmax]
            padw = x1a - x1b
            padh = y1a - y1b

            labels_patch = self._update_labels(labels_patch, padw, padh)
            mosaic_labels.append(labels_patch)
        final_labels = self._cat_labels(mosaic_labels)
        final_labels["img"] = img4
        return final_labels

    def _update_labels(self, labels, padw, padh):
        """Update labels"""
        nh, nw = labels["img"].shape[:2]
        labels["instances"].convert_bbox(format="xyxy")
        labels["instances"].denormalize(nw, nh)
        labels["instances"].add_padding(padw, padh)
        return labels

    def _cat_labels(self, mosaic_labels):
        if len(mosaic_labels) == 0:
            return {}
        cls = []
        instances = []
        for labels in mosaic_labels:
            cls.append(labels["cls"])
            instances.append(labels["instances"])
        final_labels = {
            "ori_shape": mosaic_labels[0]["ori_shape"],
            "resized_shape": (self.imgsz * 2, self.imgsz * 2),
            "im_file": mosaic_labels[0]["im_file"],
            "cls": np.concatenate(cls, 0),
            "instances": Instances.concatenate(instances, axis=0)}
        final_labels["instances"].clip(self.imgsz * 2, self.imgsz * 2)
        return final_labels


class MixUp(BaseMixTransform):

    def __init__(self, dataset, pre_transform=None, p=0.0) -> None:
        super().__init__(dataset=dataset, pre_transform=pre_transform, p=p)

    def get_indexes(self):
        return random.randint(0, len(self.dataset) - 1)

    def _mix_transform(self, labels):
        # Applies MixUp augmentation https://arxiv.org/pdf/1710.09412.pdf
        r = np.random.beta(32.0, 32.0)  # mixup ratio, alpha=beta=32.0
        labels2 = labels["mix_labels"][0]
        labels["img"] = (labels["img"] * r + labels2["img"] * (1 - r)).astype(np.uint8)
        labels["instances"] = Instances.concatenate([labels["instances"], labels2["instances"]], axis=0)
        labels["cls"] = np.concatenate([labels["cls"], labels2["cls"]], 0)
        return labels


class RandomPerspective:

    def __init__(self, degrees=0.0, translate=0.1, scale=0.5, shear=0.0, perspective=0.0, border=(0, 0)):
        self.degrees = degrees
        self.translate = translate
        self.scale = scale
        self.shear = shear
        self.perspective = perspective
        # mosaic border
        self.border = border

    def affine_transform(self, img):
        # Center
        C = np.eye(3)

        C[0, 2] = -img.shape[1] / 2  # x translation (pixels)
        C[1, 2] = -img.shape[0] / 2  # y translation (pixels)

        # Perspective
        P = np.eye(3)
        P[2, 0] = random.uniform(-self.perspective, self.perspective)  # x perspective (about y)
        P[2, 1] = random.uniform(-self.perspective, self.perspective)  # y perspective (about x)

        # Rotation and Scale
        R = np.eye(3)
        a = random.uniform(-self.degrees, self.degrees)
        # a += random.choice([-180, -90, 0, 90])  # add 90deg rotations to small rotations
        s = random.uniform(1 - self.scale, 1 + self.scale)
        # s = 2 ** random.uniform(-scale, scale)
        R[:2] = cv2.getRotationMatrix2D(angle=a, center=(0, 0), scale=s)

        # Shear
        S = np.eye(3)
        S[0, 1] = math.tan(random.uniform(-self.shear, self.shear) * math.pi / 180)  # x shear (deg)
        S[1, 0] = math.tan(random.uniform(-self.shear, self.shear) * math.pi / 180)  # y shear (deg)

        # Translation
        T = np.eye(3)
        T[0, 2] = random.uniform(0.5 - self.translate, 0.5 + self.translate) * self.size[0]  # x translation (pixels)
        T[1, 2] = random.uniform(0.5 - self.translate, 0.5 + self.translate) * self.size[1]  # y translation (pixels)

        # Combined rotation matrix
        M = T @ S @ R @ P @ C  # order of operations (right to left) is IMPORTANT
        # affine image
        if (self.border[0] != 0) or (self.border[1] != 0) or (M != np.eye(3)).any():  # image changed
            if self.perspective:
                img = cv2.warpPerspective(img, M, dsize=self.size, borderValue=(114, 114, 114))
            else:  # affine
                img = cv2.warpAffine(img, M[:2], dsize=self.size, borderValue=(114, 114, 114))
        return img, M, s

    def apply_bboxes(self, bboxes, M):
        """apply affine to bboxes only.

        Args:
            bboxes(ndarray): list of bboxes, xyxy format, with shape (num_bboxes, 4).
            M(ndarray): affine matrix.
        Returns:
            new_bboxes(ndarray): bboxes after affine, [num_bboxes, 4].
        """
        n = len(bboxes)
        if n == 0:
            return bboxes

        xy = np.ones((n * 4, 3))
        xy[:, :2] = bboxes[:, [0, 1, 2, 3, 0, 3, 2, 1]].reshape(n * 4, 2)  # x1y1, x2y2, x1y2, x2y1
        xy = xy @ M.T  # transform
        xy = (xy[:, :2] / xy[:, 2:3] if self.perspective else xy[:, :2]).reshape(n, 8)  # perspective rescale or affine

        # create new boxes
        x = xy[:, [0, 2, 4, 6]]
        y = xy[:, [1, 3, 5, 7]]
        return np.concatenate((x.min(1), y.min(1), x.max(1), y.max(1))).reshape(4, n).T

    def apply_segments(self, segments, M):
        """apply affine to segments and generate new bboxes from segments.

        Args:
            segments(ndarray): list of segments, [num_samples, 500, 2].
            M(ndarray): affine matrix.
        Returns:
            new_segments(ndarray): list of segments after affine, [num_samples, 500, 2].
            new_bboxes(ndarray): bboxes after affine, [N, 4].
        """
        n, num = segments.shape[:2]
        if n == 0:
            return [], segments

        xy = np.ones((n * num, 3))
        segments = segments.reshape(-1, 2)
        xy[:, :2] = segments
        xy = xy @ M.T  # transform
        xy = xy[:, :2] / xy[:, 2:3]
        segments = xy.reshape(n, -1, 2)
        bboxes = np.stack([segment2box(xy, self.size[0], self.size[1]) for xy in segments], 0)
        return bboxes, segments

    def apply_keypoints(self, keypoints, M):
        """apply affine to keypoints.

        Args:
            keypoints(ndarray): keypoints, [N, 17, 2].
            M(ndarray): affine matrix.
        Return:
            new_keypoints(ndarray): keypoints after affine, [N, 17, 2].
        """
        n = len(keypoints)
        if n == 0:
            return keypoints
        new_keypoints = np.ones((n * 17, 3))
        new_keypoints[:, :2] = keypoints.reshape(n * 17, 2)  # num_kpt is hardcoded to 17
        new_keypoints = new_keypoints @ M.T  # transform
        new_keypoints = (new_keypoints[:, :2] / new_keypoints[:, 2:3]).reshape(n, 34)  # perspective rescale or affine
        new_keypoints[keypoints.reshape(-1, 34) == 0] = 0
        x_kpts = new_keypoints[:, list(range(0, 34, 2))]
        y_kpts = new_keypoints[:, list(range(1, 34, 2))]

        x_kpts[np.logical_or.reduce((x_kpts < 0, x_kpts > self.size[0], y_kpts < 0, y_kpts > self.size[1]))] = 0
        y_kpts[np.logical_or.reduce((x_kpts < 0, x_kpts > self.size[0], y_kpts < 0, y_kpts > self.size[1]))] = 0
        new_keypoints[:, list(range(0, 34, 2))] = x_kpts
        new_keypoints[:, list(range(1, 34, 2))] = y_kpts
        return new_keypoints.reshape(n, 17, 2)

    def __call__(self, labels):
        """
        Affine images and targets.

        Args:
            labels(Dict): a dict of `bboxes`, `segments`, `keypoints`.
        """
        img = labels["img"]
        cls = labels["cls"]
        instances = labels.pop("instances")
        # make sure the coord formats are right
        instances.convert_bbox(format="xyxy")
        instances.denormalize(*img.shape[:2][::-1])

        self.size = img.shape[1] + self.border[1] * 2, img.shape[0] + self.border[0] * 2  # w, h
        # M is affine matrix
        # scale for func:`box_candidates`
        img, M, scale = self.affine_transform(img)

        bboxes = self.apply_bboxes(instances.bboxes, M)

        segments = instances.segments
        keypoints = instances.keypoints
        # update bboxes if there are segments.
        if len(segments):
            bboxes, segments = self.apply_segments(segments, M)

        if keypoints is not None:
            keypoints = self.apply_keypoints(keypoints, M)
        new_instances = Instances(bboxes, segments, keypoints, bbox_format="xyxy", normalized=False)
        # clip
        new_instances.clip(*self.size)

        # filter instances
        instances.scale(scale_w=scale, scale_h=scale, bbox_only=True)
        # make the bboxes have the same scale with new_bboxes
        i = self.box_candidates(box1=instances.bboxes.T,
                                box2=new_instances.bboxes.T,
                                area_thr=0.01 if len(segments) else 0.10)
        labels["instances"] = new_instances[i]
        labels["cls"] = cls[i]
        labels["img"] = img
        labels["resized_shape"] = img.shape[:2]
        return labels

    def box_candidates(self, box1, box2, wh_thr=2, ar_thr=100, area_thr=0.1, eps=1e-16):  # box1(4,n), box2(4,n)
        # Compute box candidates: box1 before augment, box2 after augment, wh_thr (pixels), aspect_ratio_thr, area_ratio
        w1, h1 = box1[2] - box1[0], box1[3] - box1[1]
        w2, h2 = box2[2] - box2[0], box2[3] - box2[1]
        ar = np.maximum(w2 / (h2 + eps), h2 / (w2 + eps))  # aspect ratio
        return (w2 > wh_thr) & (h2 > wh_thr) & (w2 * h2 / (w1 * h1 + eps) > area_thr) & (ar < ar_thr)  # candidates


class RandomHSV:

    def __init__(self, hgain=0.5, sgain=0.5, vgain=0.5) -> None:
        self.hgain = hgain
        self.sgain = sgain
        self.vgain = vgain

    def __call__(self, labels):
        img = labels["img"]
        if self.hgain or self.sgain or self.vgain:
            r = np.random.uniform(-1, 1, 3) * [self.hgain, self.sgain, self.vgain] + 1  # random gains
            hue, sat, val = cv2.split(cv2.cvtColor(img, cv2.COLOR_BGR2HSV))
            dtype = img.dtype  # uint8

            x = np.arange(0, 256, dtype=r.dtype)
            lut_hue = ((x * r[0]) % 180).astype(dtype)
            lut_sat = np.clip(x * r[1], 0, 255).astype(dtype)
            lut_val = np.clip(x * r[2], 0, 255).astype(dtype)

            im_hsv = cv2.merge((cv2.LUT(hue, lut_hue), cv2.LUT(sat, lut_sat), cv2.LUT(val, lut_val)))
            cv2.cvtColor(im_hsv, cv2.COLOR_HSV2BGR, dst=img)  # no return needed
        return labels


class RandomFlip:

    def __init__(self, p=0.5, direction="horizontal") -> None:
        assert direction in ["horizontal", "vertical"], f"Support direction `horizontal` or `vertical`, got {direction}"
        assert 0 <= p <= 1.0

        self.p = p
        self.direction = direction

    def __call__(self, labels):
        img = labels["img"]
        instances = labels.pop("instances")
        instances.convert_bbox(format="xywh")
        h, w = img.shape[:2]
        h = 1 if instances.normalized else h
        w = 1 if instances.normalized else w

        # Flip up-down
        if self.direction == "vertical" and random.random() < self.p:
            img = np.flipud(img)
            instances.flipud(h)
        if self.direction == "horizontal" and random.random() < self.p:
            img = np.fliplr(img)
            instances.fliplr(w)
        labels["img"] = np.ascontiguousarray(img)
        labels["instances"] = instances
        return labels


class LetterBox:
    """Resize image and padding for detection, instance segmentation, pose"""

    def __init__(self, new_shape=(640, 640), auto=False, scaleFill=False, scaleup=True, stride=32):
        self.new_shape = new_shape
        self.auto = auto
        self.scaleFill = scaleFill
        self.scaleup = scaleup
        self.stride = stride

    def __call__(self, labels=None, image=None):
        if labels is None:
            labels = {}
        img = labels.get("img") if image is None else image
        shape = img.shape[:2]  # current shape [height, width]
        new_shape = labels.pop("rect_shape", self.new_shape)
        if isinstance(new_shape, int):
            new_shape = (new_shape, new_shape)

        # Scale ratio (new / old)
        r = min(new_shape[0] / shape[0], new_shape[1] / shape[1])
        if not self.scaleup:  # only scale down, do not scale up (for better val mAP)
            r = min(r, 1.0)

        # Compute padding
        ratio = r, r  # width, height ratios
        new_unpad = int(round(shape[1] * r)), int(round(shape[0] * r))
        dw, dh = new_shape[1] - new_unpad[0], new_shape[0] - new_unpad[1]  # wh padding
        if self.auto:  # minimum rectangle
            dw, dh = np.mod(dw, self.stride), np.mod(dh, self.stride)  # wh padding
        elif self.scaleFill:  # stretch
            dw, dh = 0.0, 0.0
            new_unpad = (new_shape[1], new_shape[0])
            ratio = new_shape[1] / shape[1], new_shape[0] / shape[0]  # width, height ratios

        dw /= 2  # divide padding into 2 sides
        dh /= 2
        if labels.get("ratio_pad"):
            labels["ratio_pad"] = (labels["ratio_pad"], (dw, dh))  # for evaluation

        if shape[::-1] != new_unpad:  # resize
            img = cv2.resize(img, new_unpad, interpolation=cv2.INTER_LINEAR)
        top, bottom = int(round(dh - 0.1)), int(round(dh + 0.1))
        left, right = int(round(dw - 0.1)), int(round(dw + 0.1))
        img = cv2.copyMakeBorder(img, top, bottom, left, right, cv2.BORDER_CONSTANT,
                                 value=(114, 114, 114))  # add border

        if len(labels):
            labels = self._update_labels(labels, ratio, dw, dh)
            labels["img"] = img
            labels["resized_shape"] = new_shape
            return labels
        else:
            return img

    def _update_labels(self, labels, ratio, padw, padh):
        """Update labels"""
        labels["instances"].convert_bbox(format="xyxy")
        labels["instances"].denormalize(*labels["img"].shape[:2][::-1])
        labels["instances"].scale(*ratio)
        labels["instances"].add_padding(padw, padh)
        return labels


class CopyPaste:

    def __init__(self, p=0.5) -> None:
        self.p = p

    def __call__(self, labels):
        # Implement Copy-Paste augmentation https://arxiv.org/abs/2012.07177, labels as nx5 np.array(cls, xyxy)
        im = labels["img"]
        cls = labels["cls"]
        instances = labels.pop("instances")
        instances.convert_bbox(format="xyxy")
        if self.p and len(instances.segments):
            n = len(instances)
            _, w, _ = im.shape  # height, width, channels
            im_new = np.zeros(im.shape, np.uint8)

            # calculate ioa first then select indexes randomly
            ins_flip = deepcopy(instances)
            ins_flip.fliplr(w)

            ioa = bbox_ioa(ins_flip.bboxes, instances.bboxes)  # intersection over area, (N, M)
            indexes = np.nonzero((ioa < 0.30).all(1))[0]  # (N, )
            n = len(indexes)
            for j in random.sample(list(indexes), k=round(self.p * n)):
                cls = np.concatenate((cls, cls[[j]]), axis=0)
                instances = Instances.concatenate((instances, ins_flip[[j]]), axis=0)
                cv2.drawContours(im_new, instances.segments[[j]].astype(np.int32), -1, (1, 1, 1), cv2.FILLED)

            result = cv2.flip(im, 1)  # augment segments (flip left-right)
            i = cv2.flip(im_new, 1).astype(bool)
            im[i] = result[i]  # cv2.imwrite('debug.jpg', im)  # debug

        labels["img"] = im
        labels["cls"] = cls
        labels["instances"] = instances
        return labels


class Albumentations:
    # YOLOv5 Albumentations class (optional, only used if package is installed)
    def __init__(self, p=1.0):
        self.p = p
        self.transform = None
        prefix = colorstr("albumentations: ")
        try:
            import albumentations as A

            check_version(A.__version__, "1.0.3", hard=True)  # version requirement

            T = [
                A.Blur(p=0.01),
                A.MedianBlur(p=0.01),
                A.ToGray(p=0.01),
                A.CLAHE(p=0.01),
                A.RandomBrightnessContrast(p=0.0),
                A.RandomGamma(p=0.0),
                A.ImageCompression(quality_lower=75, p=0.0),]  # transforms
            self.transform = A.Compose(T, bbox_params=A.BboxParams(format="yolo", label_fields=["class_labels"]))

            LOGGER.info(prefix + ", ".join(f"{x}".replace("always_apply=False, ", "") for x in T if x.p))
        except ImportError:  # package not installed, skip
            pass
        except Exception as e:
            LOGGER.info(f"{prefix}{e}")

    def __call__(self, labels):
        im = labels["img"]
        cls = labels["cls"]
        if len(cls):
            labels["instances"].convert_bbox("xywh")
            labels["instances"].normalize(*im.shape[:2][::-1])
            bboxes = labels["instances"].bboxes
            # TODO: add supports of segments and keypoints
            if self.transform and random.random() < self.p:
                new = self.transform(image=im, bboxes=bboxes, class_labels=cls)  # transformed
                labels["img"] = new["image"]
                labels["cls"] = np.array(new["class_labels"])
            labels["instances"].update(bboxes=bboxes)
        return labels


# TODO: technically this is not an augmentation, maybe we should put this to another files
class Format:

    def __init__(self,
                 bbox_format="xywh",
                 normalize=True,
                 return_mask=False,
                 return_keypoint=False,
                 mask_ratio=4,
                 mask_overlap=True,
                 batch_idx=True):
        self.bbox_format = bbox_format
        self.normalize = normalize
        self.return_mask = return_mask  # set False when training detection only
        self.return_keypoint = return_keypoint
        self.mask_ratio = mask_ratio
        self.mask_overlap = mask_overlap
        self.batch_idx = batch_idx  # keep the batch indexes

    def __call__(self, labels):
        img = labels["img"]
        h, w = img.shape[:2]
        cls = labels.pop("cls")
        instances = labels.pop("instances")
        instances.convert_bbox(format=self.bbox_format)
        instances.denormalize(w, h)
        nl = len(instances)

        if self.return_mask:
            if nl:
                masks, instances, cls = self._format_segments(instances, cls, w, h)
                masks = torch.from_numpy(masks)
            else:
                masks = torch.zeros(1 if self.mask_overlap else nl, img.shape[0] // self.mask_ratio,
                                    img.shape[1] // self.mask_ratio)
            labels["masks"] = masks
        if self.normalize:
            instances.normalize(w, h)
        labels["img"] = self._format_img(img)
        labels["cls"] = torch.from_numpy(cls) if nl else torch.zeros(nl)
        labels["bboxes"] = torch.from_numpy(instances.bboxes) if nl else torch.zeros((nl, 4))
        if self.return_keypoint:
            labels["keypoints"] = torch.from_numpy(instances.keypoints) if nl else torch.zeros((nl, 17, 2))
        # then we can use collate_fn
        if self.batch_idx:
            labels["batch_idx"] = torch.zeros(nl)
        return labels

    def _format_img(self, img):
        if len(img.shape) < 3:
            img = np.expand_dims(img, -1)
        img = np.ascontiguousarray(img.transpose(2, 0, 1)[::-1])
        img = torch.from_numpy(img)
        return img

    def _format_segments(self, instances, cls, w, h):
        """convert polygon points to bitmap"""
        segments = instances.segments
        if self.mask_overlap:
            masks, sorted_idx = polygons2masks_overlap((h, w), segments, downsample_ratio=self.mask_ratio)
            masks = masks[None]  # (640, 640) -> (1, 640, 640)
            instances = instances[sorted_idx]
            cls = cls[sorted_idx]
        else:
            masks = polygons2masks((h, w), segments, color=1, downsample_ratio=self.mask_ratio)

        return masks, instances, cls


def mosaic_transforms(dataset, imgsz, hyp):
    pre_transform = Compose([
        Mosaic(dataset, imgsz=imgsz, p=hyp.mosaic, border=[-imgsz // 2, -imgsz // 2]),
        CopyPaste(p=hyp.copy_paste),
        RandomPerspective(
            degrees=hyp.degrees,
            translate=hyp.translate,
            scale=hyp.scale,
            shear=hyp.shear,
            perspective=hyp.perspective,
            border=[-imgsz // 2, -imgsz // 2],
        ),])
    return Compose([
        pre_transform,
        MixUp(dataset, pre_transform=pre_transform, p=hyp.mixup),
        Albumentations(p=1.0),
        RandomHSV(hgain=hyp.hsv_h, sgain=hyp.hsv_s, vgain=hyp.hsv_v),
        RandomFlip(direction="vertical", p=hyp.flipud),
        RandomFlip(direction="horizontal", p=hyp.fliplr),])  # transforms


def affine_transforms(imgsz, hyp):
    return Compose([
        LetterBox(new_shape=(imgsz, imgsz)),
        RandomPerspective(
            degrees=hyp.degrees,
            translate=hyp.translate,
            scale=hyp.scale,
            shear=hyp.shear,
            perspective=hyp.perspective,
            border=[0, 0],
        ),
        Albumentations(p=1.0),
        RandomHSV(hgain=hyp.hsv_h, sgain=hyp.hsv_s, vgain=hyp.hsv_v),
        RandomFlip(direction="vertical", p=hyp.flipud),
        RandomFlip(direction="horizontal", p=hyp.fliplr),])  # transforms


# Classification augmentations -----------------------------------------------------------------------------------------
def classify_transforms(size=224):
    # Transforms to apply if albumentations not installed
    assert isinstance(size, int), f"ERROR: classify_transforms size {size} must be integer, not (list, tuple)"
    # T.Compose([T.ToTensor(), T.Resize(size), T.CenterCrop(size), T.Normalize(IMAGENET_MEAN, IMAGENET_STD)])
    return T.Compose([CenterCrop(size), ToTensor(), T.Normalize(IMAGENET_MEAN, IMAGENET_STD)])


def classify_albumentations(
        augment=True,
        size=224,
        scale=(0.08, 1.0),
        hflip=0.5,
        vflip=0.0,
        jitter=0.4,
        mean=IMAGENET_MEAN,
        std=IMAGENET_STD,
        auto_aug=False,
):
    # YOLOv5 classification Albumentations (optional, only used if package is installed)
    prefix = colorstr("albumentations: ")
    try:
        import albumentations as A
        from albumentations.pytorch import ToTensorV2

        check_version(A.__version__, "1.0.3", hard=True)  # version requirement
        if augment:  # Resize and crop
            T = [A.RandomResizedCrop(height=size, width=size, scale=scale)]
            if auto_aug:
                # TODO: implement AugMix, AutoAug & RandAug in albumentation
                LOGGER.info(f"{prefix}auto augmentations are currently not supported")
            else:
                if hflip > 0:
                    T += [A.HorizontalFlip(p=hflip)]
                if vflip > 0:
                    T += [A.VerticalFlip(p=vflip)]
                if jitter > 0:
                    color_jitter = (float(jitter),) * 3  # repeat value for brightness, contrast, saturation, 0 hue
                    T += [A.ColorJitter(*color_jitter, 0)]
        else:  # Use fixed crop for eval set (reproducibility)
            T = [A.SmallestMaxSize(max_size=size), A.CenterCrop(height=size, width=size)]
        T += [A.Normalize(mean=mean, std=std), ToTensorV2()]  # Normalize and convert to Tensor
        LOGGER.info(prefix + ", ".join(f"{x}".replace("always_apply=False, ", "") for x in T if x.p))
        return A.Compose(T)

    except ImportError:  # package not installed, skip
        pass
    except Exception as e:
        LOGGER.info(f"{prefix}{e}")


class ClassifyLetterBox:
    # YOLOv5 LetterBox class for image preprocessing, i.e. T.Compose([LetterBox(size), ToTensor()])
    def __init__(self, size=(640, 640), auto=False, stride=32):
        super().__init__()
        self.h, self.w = (size, size) if isinstance(size, int) else size
        self.auto = auto  # pass max size integer, automatically solve for short side using stride
        self.stride = stride  # used with auto

    def __call__(self, im):  # im = np.array HWC
        imh, imw = im.shape[:2]
        r = min(self.h / imh, self.w / imw)  # ratio of new/old
        h, w = round(imh * r), round(imw * r)  # resized image
        hs, ws = (math.ceil(x / self.stride) * self.stride for x in (h, w)) if self.auto else self.h, self.w
        top, left = round((hs - h) / 2 - 0.1), round((ws - w) / 2 - 0.1)
        im_out = np.full((self.h, self.w, 3), 114, dtype=im.dtype)
        im_out[top:top + h, left:left + w] = cv2.resize(im, (w, h), interpolation=cv2.INTER_LINEAR)
        return im_out


class CenterCrop:
    # YOLOv5 CenterCrop class for image preprocessing, i.e. T.Compose([CenterCrop(size), ToTensor()])
    def __init__(self, size=640):
        super().__init__()
        self.h, self.w = (size, size) if isinstance(size, int) else size

    def __call__(self, im):  # im = np.array HWC
        imh, imw = im.shape[:2]
        m = min(imh, imw)  # min dimension
        top, left = (imh - m) // 2, (imw - m) // 2
        return cv2.resize(im[top:top + m, left:left + m], (self.w, self.h), interpolation=cv2.INTER_LINEAR)


class ToTensor:
    # YOLOv5 ToTensor class for image preprocessing, i.e. T.Compose([LetterBox(size), ToTensor()])
    def __init__(self, half=False):
        super().__init__()
        self.half = half

    def __call__(self, im):  # im = np.array HWC in BGR order
        im = np.ascontiguousarray(im.transpose((2, 0, 1))[::-1])  # HWC to CHW -> BGR to RGB -> contiguous
        im = torch.from_numpy(im)  # to torch
        im = im.half() if self.half else im.float()  # uint8 to fp16/32
        im /= 255.0  # 0-255 to 0.0-1.0
        return im