from fastai.vision.all import * import gradio as gr learn = load_learner('export.pkl') labels = learn.dls.vocab def predict(img): img = PILImage.create(img) pred,pred_idx,probs = learn.predict(img) return {labels[i]: float(probs[i]) for i in range(len(labels))} title = "Food 101 Classifier" description = "A Food 101 Classifier created using Custom Dataset from Kaggle. Created as a demo for Gradio and HuggingFace Spaces." article="

Blog post coming soon

" enable_queue=True examples = ['1005649.jpg'] demo=gr.Interface(fn=predict, inputs=gr.inputs.Image(shape=(460, 460)), outputs= gr.outputs.Label(num_top_classes=len(labels)), title=title, description=description, article=article, examples=examples ) demo.lauch()