Spaces:
Runtime error
Runtime error
My initial check-in
Browse files- .ipynb_checkpoints/README-checkpoint.md +13 -0
- .ipynb_checkpoints/app-checkpoint.py +27 -0
- .ipynb_checkpoints/requirements-checkpoint.txt +2 -0
- 1005649.jpg +0 -0
- app.py +27 -0
- export.pkl +3 -0
- requirements.txt +2 -0
.ipynb_checkpoints/README-checkpoint.md
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
title: Food Classifier
|
3 |
+
emoji: 🐢
|
4 |
+
colorFrom: blue
|
5 |
+
colorTo: green
|
6 |
+
sdk: gradio
|
7 |
+
sdk_version: 3.1.4
|
8 |
+
app_file: app.py
|
9 |
+
pinned: false
|
10 |
+
license: apache-2.0
|
11 |
+
---
|
12 |
+
|
13 |
+
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
.ipynb_checkpoints/app-checkpoint.py
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from fastai.vision.all import *
|
2 |
+
import gradio as gr
|
3 |
+
|
4 |
+
learn = load_learner('export.pkl')
|
5 |
+
labels = learn.dls.vocab
|
6 |
+
def predict(img):
|
7 |
+
img = PILImage.create(img)
|
8 |
+
pred,pred_idx,probs = learn.predict(img)
|
9 |
+
return {labels[i]: float(probs[i]) for i in range(len(labels))}
|
10 |
+
|
11 |
+
title = "Food 101 Classifier"
|
12 |
+
description = "A Food 101 Classifier created using Custom Dataset from Kaggle. Created as a demo for Gradio and HuggingFace Spaces."
|
13 |
+
article="<p style='text-align: center'><a href='https://satish1v.medium.com/' target='_blank'>Blog post coming soon</a></p>"
|
14 |
+
enable_queue=True
|
15 |
+
examples = ['1005649.jpg']
|
16 |
+
|
17 |
+
|
18 |
+
demo=gr.Interface(fn=predict,
|
19 |
+
inputs=gr.inputs.Image(shape=(460, 460)),
|
20 |
+
outputs= gr.outputs.Label(num_top_classes=len(labels)),
|
21 |
+
title=title,
|
22 |
+
description=description,
|
23 |
+
article=article,
|
24 |
+
examples=examples
|
25 |
+
)
|
26 |
+
|
27 |
+
demo.lauch()
|
.ipynb_checkpoints/requirements-checkpoint.txt
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
fastai
|
2 |
+
scikit-image
|
1005649.jpg
ADDED
![]() |
app.py
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from fastai.vision.all import *
|
2 |
+
import gradio as gr
|
3 |
+
|
4 |
+
learn = load_learner('export.pkl')
|
5 |
+
labels = learn.dls.vocab
|
6 |
+
def predict(img):
|
7 |
+
img = PILImage.create(img)
|
8 |
+
pred,pred_idx,probs = learn.predict(img)
|
9 |
+
return {labels[i]: float(probs[i]) for i in range(len(labels))}
|
10 |
+
|
11 |
+
title = "Food 101 Classifier"
|
12 |
+
description = "A Food 101 Classifier created using Custom Dataset from Kaggle. Created as a demo for Gradio and HuggingFace Spaces."
|
13 |
+
article="<p style='text-align: center'><a href='https://satish1v.medium.com/' target='_blank'>Blog post coming soon</a></p>"
|
14 |
+
enable_queue=True
|
15 |
+
examples = ['1005649.jpg']
|
16 |
+
|
17 |
+
|
18 |
+
demo=gr.Interface(fn=predict,
|
19 |
+
inputs=gr.inputs.Image(shape=(460, 460)),
|
20 |
+
outputs= gr.outputs.Label(num_top_classes=len(labels)),
|
21 |
+
title=title,
|
22 |
+
description=description,
|
23 |
+
article=article,
|
24 |
+
examples=examples
|
25 |
+
)
|
26 |
+
|
27 |
+
demo.lauch()
|
export.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4938bce2ef61b8eab6b0c3c6ae46a05409ef8d421cf08800594f1c9ca80f66f2
|
3 |
+
size 117087465
|
requirements.txt
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
fastai
|
2 |
+
scikit-image
|