File size: 1,286 Bytes
b334778
19f79d5
5d50a44
9fc880b
5d50a44
 
 
 
4146933
10a975c
19f79d5
10a975c
fdeaa3e
5d50a44
 
 
 
 
 
b334778
10a975c
5d50a44
 
b334778
5d50a44
 
b334778
5d50a44
b334778
10a975c
5d50a44
b334778
 
9fc880b
5d50a44
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
import gradio as gr
import torch
from transformers import DistilBertTokenizer, DistilBertForSequenceClassification

# Load DistilBERT model and tokenizer
model_name = "bhadresh-savani/distilbert-base-uncased-finetuned-sentiment"
tokenizer = DistilBertTokenizer.from_pretrained(model_name)
model = DistilBertForSequenceClassification.from_pretrained(model_name)

# Use GPU if available
device = "cuda" if torch.cuda.is_available() else "cpu"
model.to(device)

# Define the prediction function
def predict_sentiment(text):
    inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True).to(device)
    outputs = model(**inputs)
    predictions = torch.argmax(outputs.logits, dim=-1)
    return predictions.item()

# Gradio interface
with gr.Blocks() as sentiment_app:
    gr.Markdown("<h1>Sentiment Analysis with DistilBERT</h1>")
    
    input_box = gr.Textbox(label="Input Text", placeholder="Enter text to analyze sentiment")
    output_box = gr.Textbox(label="Sentiment Result", placeholder="Sentiment result will appear here")

    submit_button = gr.Button("Analyze Sentiment")
    
    # Button click event
    submit_button.click(fn=predict_sentiment, inputs=input_box, outputs=output_box)

# Launch the app
if __name__ == "__main__":
    sentiment_app.launch()