File size: 3,116 Bytes
f37cfad
 
 
 
 
 
0490df4
27938aa
0490df4
27938aa
0490df4
f37cfad
 
 
 
 
 
 
 
 
 
27938aa
f37cfad
 
27938aa
f37cfad
 
 
 
 
27938aa
 
f37cfad
0490df4
 
 
 
 
27938aa
 
f37cfad
27938aa
 
 
 
 
 
 
 
 
dc0eec0
820d8a7
27938aa
 
820d8a7
27938aa
f37cfad
27938aa
 
 
 
 
 
f37cfad
 
27938aa
 
 
 
 
f37cfad
 
27938aa
 
 
 
 
 
 
 
f37cfad
27938aa
 
 
 
 
f37cfad
dc0eec0
f37cfad
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
import gradio as gr
from datasets import load_dataset
from PIL import Image
from collections import OrderedDict
from random import sample
import csv
from transformers import AutoFeatureExtractor, AutoModelForImageClassification
import random

feature_extractor = AutoFeatureExtractor.from_pretrained("google/vit-base-patch16-224")
model = AutoModelForImageClassification.from_pretrained("google/vit-base-patch16-224")


title="ImageNet Roulette"
description="Try guessing the category of each image displayed, from the options provided below.\
            After 10 guesses, we will show you your accuracy!\
            "

classdict = OrderedDict()
for line in open('LOC_synset_mapping.txt', 'r').readlines():
    try:
        classdict[line.split(' ')[0]]= ' '.join(line.split(' ')[1:]).replace('\n','').split(',')[0]
    except:
        continue
classes = list(classdict.values())
imagedict={}
with open('image_labels.csv', 'r') as csv_file:
    reader = csv.DictReader(csv_file)
    for row in reader:
        imagedict[row['image_name']] = row['image_label']
images= list(imagedict.keys())
labels = list(set(imagedict.values()))

def model_classify(im):
    inputs = feature_extractor(images=im, return_tensors="pt")
    outputs = model(**inputs)
    logits = outputs.logits
    predicted_class_idx = logits.argmax(-1).item()
    return model.config.id2label[predicted_class_idx]


def random_image():
    imname = random.choice(images)
    im = Image.open('images/'+ imname +'.jpg')
    label = str(imagedict[imname])
    labels.remove(label)
    options = sample(labels,3)
    options.append(label)
    random.shuffle(options)
    options = [classes[int(i)] for i in options]
    return im, label, gr.Radio.update(value=None, choices=options), None

def check_score(pred, truth, current_score):
    if pred == classes[int(truth)]:
        return current_score + 1, f"Your score is {current_score+1}"
    return current_score, f"Your score is {current_score}"

def compare_score(userclass, prediction):
    print(userclass)
    print(prediction)
    if userclass == str(prediction).split(',')[0]:
        return "Great! You and the model agree on the category"
    return "You and the model disagree"

with gr.Blocks() as demo:
    user_score = gr.State(0)
    model_score = gr.State(0)
    image_label = gr.State()
    prediction = gr.State()

    with gr.Row():
        with gr.Column():
            image = gr.Image(shape=(448, 448))
            radio = gr.Radio(["option1", "option2", "option3"], label="Pick a category", interactive=True)
        with gr.Column():
            prediction = gr.Label(label="Model Prediction")
            score = gr.Label(label="Your Score")
            message = gr.Text()

    btn = gr.Button("Next image")

    demo.load(random_image, None, [image, image_label, radio, prediction])
    radio.change(model_classify, image, prediction)
    radio.change(check_score, [radio, image_label, user_score], [user_score, score])
    radio.change(compare_score, [radio, prediction], message)
    btn.click(random_image, None, [image, image_label, radio, prediction])


demo.launch()