# Transformers and its models import transformers # For Image Processing from transformers import ViTImageProcessor # For Model from transformers import ViTModel, ViTConfig # For data augmentation from torchvision import transforms, datasets # For GPU from transformers import set_seed from torch.optim import AdamW from accelerate import Accelerator, notebook_launcher # For Data Loaders import datasets from torch.utils.data import Dataset, DataLoader # For Display from tqdm.notebook import tqdm # Other Generic Libraries import torch import PIL import streamlit as st import gc from glob import glob import shutil import torch.nn.functional as F # Initialse Globle Variables MODEL_TRANSFORMER = 'google/vit-base-patch16-224' BATCH_SIZE = 8 # Set the device (GPU or CPU) device = torch.device("cuda" if torch.cuda.is_available() else "cpu") pipeline = pipeline(task="image-classification", model="julien-c/hotdog-not-hotdog") st.title("Hot Dog? Or Not?") # Read images from directory # Read image from Camera enable = st.checkbox("Enable camera") picture = st.camera_input("Take a picture", disabled=not enable) if picture: col1, col2 = st.columns(2) image = PIL.Image.open(picture) col1.image(image, use_column_width=True) predictions = pipeline(image) col2.header("Probabilities") for p in predictions: col2.subheader(f"{ p['label'] }: { round(p['score'] * 100, 1)}%")