aimljan25att / app.py
Kaushik066's picture
Update app.py
c336617 verified
raw
history blame
6.15 kB
# Transformers and its models
import transformers
# For Image Processing
from transformers import ViTImageProcessor
# For Model
from transformers import ViTModel, ViTConfig, pipeline
# For data augmentation
from torchvision import transforms, datasets
# For GPU
from transformers import set_seed
from torch.optim import AdamW
from accelerate import Accelerator, notebook_launcher
# For Data Loaders
import datasets
from torch.utils.data import Dataset, DataLoader
# For Display
from tqdm.notebook import tqdm
# Other Generic Libraries
import torch
import PIL
import os
import streamlit as st
import gc
from glob import glob
import shutil
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import torch.nn.functional as F
# Set the device (GPU or CPU)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# Initialse Globle Variables
MODEL_TRANSFORMER = 'google/vit-base-patch16-224'
BATCH_SIZE = 8
# Set Paths
data_path = 'employees'
model_path = 'vit_pytorch_GPU_1.pt'
# Set Title
st.title("Employee Attendance System")
#pipeline = pipeline(task="image-classification", model="julien-c/hotdog-not-hotdog")
# Define Image Processor
image_processor_prod = ViTImageProcessor.from_pretrained(MODEL_TRANSFORMER, attn_implementation="sdpa", torch_dtype=torch.float16)
# Define ML Model
class FaceEmbeddingModel(torch.nn.Module):
def __init__(self, model_name, embedding_size):
super(FaceEmbeddingModel, self).__init__()
self.config = ViTConfig.from_pretrained(model_name, id2label=idx_to_label, label2id=label_to_idx, return_dict=True)
self.backbone = ViTModel.from_pretrained(model_name, config=self.config) # Load ViT model
self.fc = torch.nn.Linear(self.backbone.config.hidden_size, embedding_size) # Convert to 512D feature vector
def forward(self, images):
x = self.backbone(images).last_hidden_state[:, 0] # Extract embeddings
x = self.fc(x) # Convert to 512D embedding
return torch.nn.functional.normalize(x) # Normalize for cosine similarity
# Load the model
model_pretrained = torch.load(model_path, map_location=device, weights_only=False)
# Define the ML model - Evaluation function
def prod_function(transformer_model, prod_dl, prod_data):
# Initialize accelerator
accelerator = Accelerator()
# to INFO for the main process only.
if accelerator.is_main_process:
datasets.utils.logging.set_verbosity_warning()
transformers.utils.logging.set_verbosity_info()
else:
datasets.utils.logging.set_verbosity_error()
transformers.utils.logging.set_verbosity_error()
# The seed need to be set before we instantiate the model, as it will determine the random head.
set_seed(42)
# There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the prepare method.
accelerated_model, acclerated_prod_dl, acclerated_prod_data = accelerator.prepare(transformer_model, prod_dl, prod_data)
# Evaluate at the end of the epoch
accelerated_model.eval()
# Find Embedding of the image to be evaluated
emb_prod = accelerated_model(acclerated_prod_data)
prod_preds = []
for batch in tqdm(acclerated_prod_dl):
with torch.no_grad():
emb = accelerated_model(**batch)
distance = F.pairwise_distance(emb, emb_prod)
prod_preds.append(distance)
return prod_preds
# Creation of Dataloader
class CustomDatasetProd(Dataset):
def __init__(self, pixel_values):
self.pixel_values = pixel_values
def __len__(self):
return len(self.pixel_values)
def __getitem__(self, idx):
item = {
'pixel_values': self.pixel_values[idx].squeeze(0),
}
return item
# Creation of Dataset
class CreateDatasetProd():
def __init__(self, image_processor):
super().__init__()
self.image_processor = image_processor
# Define a transformation pipeline
self.transform_prod = transforms.v2.Compose([
transforms.v2.ToImage(),
transforms.v2.ToDtype(torch.uint8, scale=False)
])
def get_pixels(self, img_paths):
pixel_values = []
for path in tqdm(img_paths):
# Read and process Images
img = PIL.Image.open(path)
img = self.transform_prod(img)
# Scaling the video to ML model's desired format
img = self.image_processor(img, return_tensors='pt') #, input_data_format='channels_first')
pixel_values.append(img['pixel_values'].squeeze(0))
# Force garbage collection
del img
gc.collect()
return pixel_values
def create_dataset(self, image_paths):
pixel_values = torch.stack(self.get_pixels(image_paths))
return CustomDatasetProd(pixel_values=pixel_values)
# Read images from directory
image_paths = []
image_file = glob(os.path.join(data_path, '*.jpg'))
#st.write(image_file)
image_paths.extend(image_file)
st.write('input path size:', len(image_paths))
st.write(image_paths)
# Create DataLoader for Employees image
dataset_prod_obj = CreateDatasetProd(image_processor_prod)
prod_ds = dataset_prod_obj.create_dataset(image_paths)
prod_dl = DataLoader(prod_ds, batch_size=BATCH_SIZE)
# Testing the dataloader
prod_inputs = next(iter(prod_dl))
print(prod_inputs['pixel_values'].shape)
## Read image from Camera
#enable = st.checkbox("Enable camera")
#picture_path = st.camera_input("Take a picture", disabled=not enable)
#if picture_path:
# # Create DataLoader for Webcam Image
# webcam_ds = dataset_prod_obj.create_dataset(picture_path)
# webcam_dl = DataLoader(webcam_ds, batch_size=BATCH_SIZE)
#
#
#prediction = prod_function(model_pretrained, prod_dl, webcam_dl)
#predictions = torch.cat(prediction, 0).to('cpu')
#match_idx = torch.argmin(predictions)
#if predictions[match_idx] <= 0.3:
# st.write('Welcome: ',image_paths[match_idx].split('/')[-1].split('.')[0])
#else:
# st.write("Match not found")