Spaces:
Sleeping
Sleeping
# Transformers and its models | |
import transformers | |
# For Image Processing | |
from transformers import ViTImageProcessor | |
# For Model | |
from transformers import ViTModel, ViTConfig, pipeline | |
# For data augmentation | |
from torchvision import transforms, datasets | |
# For GPU | |
from transformers import set_seed | |
from torch.optim import AdamW | |
from accelerate import Accelerator, notebook_launcher | |
# For Data Loaders | |
import datasets | |
from torch.utils.data import Dataset, DataLoader | |
# For Display | |
#from tqdm.notebook import tqdm | |
# Other Generic Libraries | |
import torch | |
from PIL import Image | |
import os | |
import streamlit as st | |
import gc | |
from glob import glob | |
import shutil | |
import pandas as pd | |
import numpy as np | |
#import matplotlib.pyplot as plt | |
from io import BytesIO | |
import torch.nn.functional as F | |
# Set the device (GPU or CPU) | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
# Initialse Globle Variables | |
MODEL_TRANSFORMER = 'google/vit-base-patch16-224' | |
BATCH_SIZE = 8 | |
# Set Paths | |
data_path = 'employees' | |
model_path = 'vit_pytorch_GPU_1.pt' | |
webcam_path = 'captured_image.jpg' | |
# Set Title | |
st.title("Employee Attendance System") | |
#pipeline = pipeline(task="image-classification", model="julien-c/hotdog-not-hotdog") | |
# Define Image Processor | |
image_processor_prod = ViTImageProcessor.from_pretrained(MODEL_TRANSFORMER, attn_implementation="sdpa", torch_dtype=torch.float16) | |
# Define ML Model | |
class FaceEmbeddingModel(torch.nn.Module): | |
def __init__(self, model_name, embedding_size): | |
super(FaceEmbeddingModel, self).__init__() | |
self.config = ViTConfig.from_pretrained(model_name, id2label=idx_to_label, label2id=label_to_idx, return_dict=True) | |
self.backbone = ViTModel.from_pretrained(model_name, config=self.config) # Load ViT model | |
self.fc = torch.nn.Linear(self.backbone.config.hidden_size, embedding_size) # Convert to 512D feature vector | |
def forward(self, images): | |
x = self.backbone(images).last_hidden_state[:, 0] # Extract embeddings | |
x = self.fc(x) # Convert to 512D embedding | |
return torch.nn.functional.normalize(x) # Normalize for cosine similarity | |
# Load the model | |
model_pretrained = torch.load(model_path, map_location=device, weights_only=False) | |
# Define the ML model - Evaluation function | |
def prod_function(transformer_model, prod_dl, webcam_dl): | |
# Initialize accelerator | |
accelerator = Accelerator() | |
# to INFO for the main process only. | |
if accelerator.is_main_process: | |
datasets.utils.logging.set_verbosity_warning() | |
transformers.utils.logging.set_verbosity_info() | |
else: | |
datasets.utils.logging.set_verbosity_error() | |
transformers.utils.logging.set_verbosity_error() | |
# The seed need to be set before we instantiate the model, as it will determine the random head. | |
set_seed(42) | |
# There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the prepare method. | |
accelerated_model, acclerated_prod_dl, acclerated_webcam_dl = accelerator.prepare(transformer_model, prod_dl, webcam_dl) | |
# Evaluate at the end of the epoch | |
accelerated_model.eval() | |
# Find Embedding of the image to be evaluated | |
for batch in acclerated_webcam_dl: | |
with torch.no_grad(): | |
#img_prod = acclerated_prod_data['pixel_values'] | |
emb_prod = accelerated_model(batch['pixel_values']) | |
prod_preds = [] | |
for batch in acclerated_prod_dl: | |
#img = batch['pixel_values'] | |
with torch.no_grad(): | |
emb = accelerated_model(batch['pixel_values']) | |
distance = F.pairwise_distance(emb, emb_prod) | |
prod_preds.append(distance) | |
return prod_preds | |
# Creation of Dataloader | |
class CustomDatasetProd(Dataset): | |
def __init__(self, pixel_values): | |
self.pixel_values = pixel_values | |
def __len__(self): | |
return len(self.pixel_values) | |
def __getitem__(self, idx): | |
item = { | |
'pixel_values': self.pixel_values[idx].squeeze(0), | |
} | |
return item | |
# Creation of Dataset | |
class CreateDatasetProd(): | |
def __init__(self, image_processor): | |
super().__init__() | |
self.image_processor = image_processor | |
# Define a transformation pipeline | |
self.transform_prod = transforms.v2.Compose([ | |
transforms.v2.ToImage(), | |
transforms.v2.ToDtype(torch.uint8, scale=False) | |
]) | |
def get_pixels(self, img_paths): | |
pixel_values = [] | |
for path in img_paths: | |
# Read and process Images | |
img = Image.open(path) | |
img = self.transform_prod(img) | |
# Scaling the video to ML model's desired format | |
img = self.image_processor(img, return_tensors='pt') #, input_data_format='channels_first') | |
pixel_values.append(img['pixel_values'].squeeze(0)) | |
# Force garbage collection | |
del img | |
gc.collect() | |
return pixel_values | |
def get_pixel(self, img_path): | |
# Read and process Images | |
img = Image.open(img_path) | |
img = self.transform_prod(img) | |
# Scaling the video to ML model's desired format | |
img = self.image_processor(img, return_tensors='pt') #, input_data_format='channels_first') | |
pixel_values = img['pixel_values'] #.squeeze(0) | |
# Force garbage collection | |
del img | |
gc.collect() | |
return pixel_values | |
def create_dataset(self, image_paths, webcam=False): | |
if webcam == True: | |
pixel_values = self.get_pixel(image_paths) | |
else: | |
pixel_values = torch.stack(self.get_pixels(image_paths)) | |
return CustomDatasetProd(pixel_values=pixel_values) | |
# Read images from directory | |
image_paths = [] | |
image_file = glob(os.path.join(data_path, '*.jpg')) | |
#st.write(image_file) | |
image_paths.extend(image_file) | |
#st.write('input path size:', len(image_paths)) | |
#st.write(image_paths) | |
# Create DataLoader for Employees image | |
dataset_prod_obj = CreateDatasetProd(image_processor_prod) | |
prod_ds = dataset_prod_obj.create_dataset(image_paths, webcam=False) | |
prod_dl = DataLoader(prod_ds, batch_size=BATCH_SIZE) | |
## Testing the dataloader | |
#prod_inputs = next(iter(prod_dl)) | |
#st.write(prod_inputs['pixel_values'].shape) | |
with gr.Blocks(css=custom_css) as demo: | |
gr.Markdown("# AI Face Recognition app for automated employee attendance") | |
# About the app Tab | |
with gr.Tab("About the app"): | |
gr.Markdown( | |
""" | |
## Product Description/Objective | |
An AI face recognition app for automated employee attendance uses advanced facial recognition technology to accurately and efficiently track employee attendance. | |
By simply scanning employees' faces upon arrival and departure, the app eliminates the need for traditional timecards or biometric devices, reducing errors and fraud. | |
It provides real-time attendance data, enhances workplace security, and streamlines HR processes for greater productivity and accuracy. | |
## How does it work ? | |
Our app leverages Google's advanced **Vision Transformer (ViT)** architecture, trained on the **LFW (Labeled Faces in the Wild) dataset**, to deliver highly accurate employee attendance tracking through facial recognition. | |
The AI model intelligently extracts distinct facial features and compares them to the stored data of registered employees. When an employee’s face is scanned, the model analyzes the key features, and a confidence score is generated. | |
A high score indicates a match, confirming the employee’s identity and marking their attendance automatically. This seamless, secure process ensures precise tracking while minimizing errors and enhancing workplace efficiency. | |
## About the architecture. | |
## About the Dataset the app is trained on | |
""") | |
# Gesture recognition Tab | |
with gr.Tab("About the app"): | |
# Read image from Camera | |
enable = st.checkbox("Enable camera") | |
picture = st.camera_input("Take a picture", disabled=not enable) | |
if picture is not None: | |
#img = Image.open(picture) | |
#picture.save(webcam_path, "JPEG") | |
#st.write('Image saved as:',webcam_path) | |
## Create DataLoader for Webcam Image | |
webcam_ds = dataset_prod_obj.create_dataset(picture, webcam=True) | |
webcam_dl = DataLoader(webcam_ds, batch_size=BATCH_SIZE) | |
## Testing the dataloader | |
#prod_inputs = next(iter(webcam_dl)) | |
#st.write(prod_inputs['pixel_values'].shape) | |
with st.spinner("Wait for it...", show_time=True): | |
# Run the predictions | |
prediction = prod_function(model_pretrained, prod_dl, webcam_dl) | |
predictions = torch.cat(prediction, 0).to(device) | |
match_idx = torch.argmin(predictions) | |
st.write(predictions) | |
st.write(image_paths) | |
# Display the results | |
if predictions[match_idx] <= 0.3: | |
st.write('Welcome: ',image_paths[match_idx].split('/')[-1].split('.')[0]) | |
else: | |
st.write("Match not found") | |