File size: 1,420 Bytes
9ca0a51
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
743f73f
9ca0a51
8775ba7
9ca0a51
 
 
 
 
 
 
 
 
 
 
8775ba7
 
 
 
 
9ca0a51
8775ba7
 
9ca0a51
 
 
 
 
 
8775ba7
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
# Transformers and its models
import transformers

# For Image Processing
from transformers import ViTImageProcessor

# For Model
from transformers import ViTModel, ViTConfig

# For data augmentation
from torchvision import transforms, datasets

# For GPU
from transformers import set_seed
from torch.optim import AdamW
from accelerate import Accelerator, notebook_launcher

# For Data Loaders
import datasets
from torch.utils.data import Dataset, DataLoader

# For Display
from tqdm.notebook import tqdm

# Other Generic Libraries
import torch
import PIL
import streamlit as st
import gc
from glob import glob
import shutil
import torch.nn.functional as F

# Initialse Globle Variables
MODEL_TRANSFORMER = 'google/vit-base-patch16-224'
BATCH_SIZE = 8

# Set the device (GPU or CPU)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

pipeline = pipeline(task="image-classification", model="julien-c/hotdog-not-hotdog")

st.title("Hot Dog? Or Not?")

# Read images from directory


# Read image from Camera
enable = st.checkbox("Enable camera")
picture = st.camera_input("Take a picture", disabled=not enable)
if picture:
    col1, col2 = st.columns(2)
    image = PIL.Image.open(picture)
    col1.image(image, use_column_width=True)
    predictions = pipeline(image)

    col2.header("Probabilities")
    for p in predictions:
        col2.subheader(f"{ p['label'] }: { round(p['score'] * 100, 1)}%")