Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,8 +1,22 @@
|
|
1 |
import gradio as gr
|
|
|
|
|
|
|
2 |
|
3 |
def detect_faces(image ) :
|
4 |
# detect faces
|
5 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
|
7 |
iface = gr.Interface( fn=detect_faces,
|
8 |
inputs="image",
|
|
|
1 |
import gradio as gr
|
2 |
+
import numpy as np
|
3 |
+
import cv2
|
4 |
+
|
5 |
|
6 |
def detect_faces(image ) :
|
7 |
# detect faces
|
8 |
+
# convert image in to numpy array
|
9 |
+
image_np = np.array(image)
|
10 |
+
# convert image into gray
|
11 |
+
gray_image = cv2.cvtColor(image_np, cv2.COLOR_RGB2GRAY)
|
12 |
+
# use detectmultiscale function to detect faces using haar cascade
|
13 |
+
face_cascade = cv2.CascadeClassifier(cv2.data.haarcascades + "haarcascade_frontalface_default.xml")
|
14 |
+
faces = face_cascade.detectMultiScale(gray_image, scaleFactor=1.1, minNeighbors=5, minSize=(30, 30))
|
15 |
+
# draw rectangle along detected faces
|
16 |
+
for (x, y, w, h) in faces:
|
17 |
+
cv2.rectangle(image_np, (x, y), (x+w, y+h), (255, 0, 0), 5)
|
18 |
+
|
19 |
+
return image_np
|
20 |
|
21 |
iface = gr.Interface( fn=detect_faces,
|
22 |
inputs="image",
|