sanpang commited on
Commit
d793667
·
2 Parent(s): c7a55f9 abaac0e

Merge branch 'master' into main

Browse files
Files changed (3) hide show
  1. app.py +83 -0
  2. llamaindex_RAG.py +48 -0
  3. test_internlm.py +22 -0
app.py ADDED
@@ -0,0 +1,83 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ from llama_index.core import VectorStoreIndex, SimpleDirectoryReader, Settings
3
+ from llama_index.embeddings.huggingface import HuggingFaceEmbedding
4
+ from llama_index.legacy.callbacks import CallbackManager
5
+ from llama_index.llms.openai_like import OpenAILike
6
+
7
+ # Create an instance of CallbackManager
8
+ callback_manager = CallbackManager()
9
+
10
+ api_base_url = "https://internlm-chat.intern-ai.org.cn/puyu/api/v1/"
11
+ model = "internlm2.5-latest"
12
+ api_key = ""
13
+
14
+ # api_base_url = "https://api.siliconflow.cn/v1"
15
+ # model = "internlm/internlm2_5-7b-chat"
16
+ # api_key = "请填写 API Key"
17
+
18
+ llm =OpenAILike(model=model, api_base=api_base_url, api_key=api_key, is_chat_model=True,callback_manager=callback_manager)
19
+
20
+
21
+
22
+ st.set_page_config(page_title="llama_index_demo", page_icon="🦜🔗")
23
+ st.title("llama_index_demo")
24
+
25
+ # 初始化模型
26
+ @st.cache_resource
27
+ def init_models():
28
+ embed_model = HuggingFaceEmbedding(
29
+ model_name="/root/model/sentence-transformer"
30
+ )
31
+ Settings.embed_model = embed_model
32
+
33
+ #用初始化llm
34
+ Settings.llm = llm
35
+
36
+ documents = SimpleDirectoryReader("/root/llamaindex_demo/data").load_data()
37
+ index = VectorStoreIndex.from_documents(documents)
38
+ query_engine = index.as_query_engine()
39
+
40
+ return query_engine
41
+
42
+ # 检查是否需要初始化模型
43
+ if 'query_engine' not in st.session_state:
44
+ st.session_state['query_engine'] = init_models()
45
+
46
+ def greet2(question):
47
+ response = st.session_state['query_engine'].query(question)
48
+ return response
49
+
50
+
51
+ # Store LLM generated responses
52
+ if "messages" not in st.session_state.keys():
53
+ st.session_state.messages = [{"role": "assistant", "content": "你好,我是你的助手,有什么我可以帮助你的吗?"}]
54
+
55
+ # Display or clear chat messages
56
+ for message in st.session_state.messages:
57
+ with st.chat_message(message["role"]):
58
+ st.write(message["content"])
59
+
60
+ def clear_chat_history():
61
+ st.session_state.messages = [{"role": "assistant", "content": "你好,我是你的助手,有什么我可以帮助你的吗?"}]
62
+
63
+ st.sidebar.button('Clear Chat History', on_click=clear_chat_history)
64
+
65
+ # Function for generating LLaMA2 response
66
+ def generate_llama_index_response(prompt_input):
67
+ return greet2(prompt_input)
68
+
69
+ # User-provided prompt
70
+ if prompt := st.chat_input():
71
+ st.session_state.messages.append({"role": "user", "content": prompt})
72
+ with st.chat_message("user"):
73
+ st.write(prompt)
74
+
75
+ # Gegenerate_llama_index_response last message is not from assistant
76
+ if st.session_state.messages[-1]["role"] != "assistant":
77
+ with st.chat_message("assistant"):
78
+ with st.spinner("Thinking..."):
79
+ response = generate_llama_index_response(prompt)
80
+ placeholder = st.empty()
81
+ placeholder.markdown(response)
82
+ message = {"role": "assistant", "content": response}
83
+ st.session_state.messages.append(message)
llamaindex_RAG.py ADDED
@@ -0,0 +1,48 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ os.environ['NLTK_DATA'] = '/root/nltk_data'
3
+
4
+ from llama_index.core import VectorStoreIndex, SimpleDirectoryReader
5
+ from llama_index.core.settings import Settings
6
+ from llama_index.embeddings.huggingface import HuggingFaceEmbedding
7
+ from llama_index.legacy.callbacks import CallbackManager
8
+ from llama_index.llms.openai_like import OpenAILike
9
+
10
+
11
+ # Create an instance of CallbackManager
12
+ callback_manager = CallbackManager()
13
+
14
+ api_base_url = "https://internlm-chat.intern-ai.org.cn/puyu/api/v1/"
15
+ model = "internlm2.5-latest"
16
+ api_key = ""
17
+
18
+ # api_base_url = "https://api.siliconflow.cn/v1"
19
+ # model = "internlm/internlm2_5-7b-chat"
20
+ # api_key = "请填写 API Key"
21
+
22
+
23
+
24
+ llm =OpenAILike(model=model, api_base=api_base_url, api_key=api_key, is_chat_model=True,callback_manager=callback_manager)
25
+
26
+
27
+ #初始化一个HuggingFaceEmbedding对象,用于将文本转换为向量表示
28
+ embed_model = HuggingFaceEmbedding(
29
+ #指定了一个预训练的sentence-transformer模型的路径
30
+ model_name="/root/model/sentence-transformer"
31
+ )
32
+ #将创建的嵌入模型赋值给全局设置的embed_model属性,
33
+ #这样在后续的索引构建过程中就会使用这个模型。
34
+ Settings.embed_model = embed_model
35
+
36
+ #初始化llm
37
+ Settings.llm = llm
38
+
39
+ #从指定目录读取所有文档,并加载数据到内存中
40
+ documents = SimpleDirectoryReader("/root/llamaindex_demo/data").load_data()
41
+ #创建一个VectorStoreIndex,并使用之前加载的文档来构建索引。
42
+ # 此索引将文档转换为向量,并存储这些向量以便于快速检索。
43
+ index = VectorStoreIndex.from_documents(documents)
44
+ # 创建一个查询引擎,这个引擎可以接收查询并返回相关文档的响应。
45
+ query_engine = index.as_query_engine()
46
+ response = query_engine.query("xtuner是什么?")
47
+
48
+ print(response)
test_internlm.py ADDED
@@ -0,0 +1,22 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from openai import OpenAI
2
+
3
+ base_url = "https://internlm-chat.intern-ai.org.cn/puyu/api/v1/"
4
+ api_key = ""
5
+ model="internlm2.5-latest"
6
+
7
+ # base_url = "https://api.siliconflow.cn/v1"
8
+ # api_key = "sk-请填写准确的 token!"
9
+ # model="internlm/internlm2_5-7b-chat"
10
+
11
+ client = OpenAI(
12
+ api_key=api_key ,
13
+ base_url=base_url,
14
+ )
15
+
16
+ chat_rsp = client.chat.completions.create(
17
+ model=model,
18
+ messages=[{"role": "user", "content": "xtuner是什么?"}],
19
+ )
20
+
21
+ for choice in chat_rsp.choices:
22
+ print(choice.message.content)