Spaces:
Running
Running
Merge branch 'main' of https://hf-mirror.com/spaces/sanpang/llamaindex_demo into main
Browse files- app.py +9 -10
- requirements.txt +6 -0
app.py
CHANGED
@@ -1,39 +1,38 @@
|
|
|
|
1 |
import streamlit as st
|
2 |
from llama_index.core import VectorStoreIndex, SimpleDirectoryReader, Settings
|
3 |
from llama_index.embeddings.huggingface import HuggingFaceEmbedding
|
4 |
from llama_index.legacy.callbacks import CallbackManager
|
5 |
from llama_index.llms.openai_like import OpenAILike
|
6 |
|
7 |
-
# Create an instance of CallbackManager
|
8 |
callback_manager = CallbackManager()
|
9 |
|
10 |
api_base_url = "https://internlm-chat.intern-ai.org.cn/puyu/api/v1/"
|
11 |
model = "internlm2.5-latest"
|
12 |
-
api_key = ""
|
13 |
|
14 |
-
#
|
15 |
-
|
16 |
-
# api_key = "请填写 API Key"
|
17 |
|
18 |
llm =OpenAILike(model=model, api_base=api_base_url, api_key=api_key, is_chat_model=True,callback_manager=callback_manager)
|
19 |
|
20 |
-
|
21 |
-
|
22 |
st.set_page_config(page_title="llama_index_demo", page_icon="🦜🔗")
|
23 |
-
st.title("
|
|
|
|
|
|
|
24 |
|
25 |
# 初始化模型
|
26 |
@st.cache_resource
|
27 |
def init_models():
|
28 |
embed_model = HuggingFaceEmbedding(
|
29 |
-
model_name="
|
30 |
)
|
31 |
Settings.embed_model = embed_model
|
32 |
|
33 |
#用初始化llm
|
34 |
Settings.llm = llm
|
35 |
|
36 |
-
documents = SimpleDirectoryReader("
|
37 |
index = VectorStoreIndex.from_documents(documents)
|
38 |
query_engine = index.as_query_engine()
|
39 |
|
|
|
1 |
+
import os
|
2 |
import streamlit as st
|
3 |
from llama_index.core import VectorStoreIndex, SimpleDirectoryReader, Settings
|
4 |
from llama_index.embeddings.huggingface import HuggingFaceEmbedding
|
5 |
from llama_index.legacy.callbacks import CallbackManager
|
6 |
from llama_index.llms.openai_like import OpenAILike
|
7 |
|
|
|
8 |
callback_manager = CallbackManager()
|
9 |
|
10 |
api_base_url = "https://internlm-chat.intern-ai.org.cn/puyu/api/v1/"
|
11 |
model = "internlm2.5-latest"
|
|
|
12 |
|
13 |
+
# 通过Spaces的secret传入
|
14 |
+
api_key = os.environ.get('API_KEY')
|
|
|
15 |
|
16 |
llm =OpenAILike(model=model, api_base=api_base_url, api_key=api_key, is_chat_model=True,callback_manager=callback_manager)
|
17 |
|
|
|
|
|
18 |
st.set_page_config(page_title="llama_index_demo", page_icon="🦜🔗")
|
19 |
+
st.title("llamaindex_demo")
|
20 |
+
|
21 |
+
os.system('git lfs install')
|
22 |
+
os.system('git clone https://www.modelscope.cn/Ceceliachenen/paraphrase-multilingual-MiniLM-L12-v2.git')
|
23 |
|
24 |
# 初始化模型
|
25 |
@st.cache_resource
|
26 |
def init_models():
|
27 |
embed_model = HuggingFaceEmbedding(
|
28 |
+
model_name="./paraphrase-multilingual-MiniLM-L12-v2"
|
29 |
)
|
30 |
Settings.embed_model = embed_model
|
31 |
|
32 |
#用初始化llm
|
33 |
Settings.llm = llm
|
34 |
|
35 |
+
documents = SimpleDirectoryReader("./data").load_data()
|
36 |
index = VectorStoreIndex.from_documents(documents)
|
37 |
query_engine = index.as_query_engine()
|
38 |
|
requirements.txt
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
llama-index==0.11.20
|
2 |
+
llama-index-llms-replicate==0.3.0
|
3 |
+
llama-index-llms-openai-like==0.2.0
|
4 |
+
llama-index-embeddings-huggingface==0.3.1
|
5 |
+
llama-index-embeddings-instructor==0.2.1
|
6 |
+
sentence-transformers==2.7.0
|