sanjudebnath commited on
Commit
4ded00b
·
verified ·
1 Parent(s): aad2b57

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +6 -3
app.py CHANGED
@@ -3,13 +3,18 @@ import numpy as np
3
  import torch
4
  from transformers import DistilBertTokenizer, DistilBertForQuestionAnswering
5
 
6
- @st.cache(allow_output_mutation=True)
 
 
7
  def load_model():
8
  model = DistilBertForQuestionAnswering.from_pretrained("distilbert-base-uncased-distilled-squad")
9
  tokenizer = DistilBertTokenizer.from_pretrained("distilbert-base-uncased-distilled-squad")
10
  return model, tokenizer
11
 
12
  def get_answer(question, text, tokenizer, model):
 
 
 
13
  inputs = tokenizer(question, text, return_tensors="pt", truncation=True, padding=True)
14
  with torch.no_grad():
15
  outputs = model(**inputs)
@@ -20,8 +25,6 @@ def get_answer(question, text, tokenizer, model):
20
  return answer
21
 
22
  def main():
23
- st.set_page_config(page_title="Question Answering Tool", page_icon=":mag_right:")
24
-
25
  st.write("# Question Answering Tool \n"
26
  "This tool will help you find answers to your questions about the text you provide. \n"
27
  "Please enter your question and the text you want to search in the boxes below.")
 
3
  import torch
4
  from transformers import DistilBertTokenizer, DistilBertForQuestionAnswering
5
 
6
+ st.set_page_config(page_title="Question Answering Tool", page_icon=":mag_right:")
7
+
8
+ @st.cache_resource
9
  def load_model():
10
  model = DistilBertForQuestionAnswering.from_pretrained("distilbert-base-uncased-distilled-squad")
11
  tokenizer = DistilBertTokenizer.from_pretrained("distilbert-base-uncased-distilled-squad")
12
  return model, tokenizer
13
 
14
  def get_answer(question, text, tokenizer, model):
15
+ if "your name" in question.lower():
16
+ return "My name is Numini, full form NativUttarMini, created by Sanju Debnath at University of Calcutta."
17
+
18
  inputs = tokenizer(question, text, return_tensors="pt", truncation=True, padding=True)
19
  with torch.no_grad():
20
  outputs = model(**inputs)
 
25
  return answer
26
 
27
  def main():
 
 
28
  st.write("# Question Answering Tool \n"
29
  "This tool will help you find answers to your questions about the text you provide. \n"
30
  "Please enter your question and the text you want to search in the boxes below.")