Spaces:
Runtime error
Runtime error
File size: 8,866 Bytes
7fc7f3d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 |
import os
os.system(
"wget https://upload.wikimedia.org/wikipedia/commons/thumb/e/ea/Van_Gogh_-_Starry_Night_-_Google_Art_Project.jpg/1920px-Van_Gogh_-_Starry_Night_-_Google_Art_Project.jpg -O starry.jpg")
from PIL import Image
import requests
import torch
from torchvision import transforms
from torchvision.transforms.functional import InterpolationMode
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
# MDETR Code
import torchvision.transforms as T
import matplotlib.pyplot as plt
from collections import defaultdict
import torch.nn.functional as F
import numpy as np
from skimage.measure import find_contours
from matplotlib import patches, lines
from matplotlib.patches import Polygon
import gradio as gr
torch.hub.download_url_to_file('https://cdn.pixabay.com/photo/2014/03/04/15/10/elephants-279505_1280.jpg',
'elephant.jpg')
model2, postprocessor = torch.hub.load('ashkamath/mdetr:main', 'mdetr_efficientnetB5', pretrained=True,
return_postprocessor=True)
model2 = model2.cpu()
model2.eval()
torch.set_grad_enabled(False);
# standard PyTorch mean-std input image normalization
transform = T.Compose([
T.Resize(800),
T.ToTensor(),
T.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
])
# for output bounding box post-processing
def box_cxcywh_to_xyxy(x):
x_c, y_c, w, h = x.unbind(1)
b = [(x_c - 0.5 * w), (y_c - 0.5 * h),
(x_c + 0.5 * w), (y_c + 0.5 * h)]
return torch.stack(b, dim=1)
def rescale_bboxes(out_bbox, size):
img_w, img_h = size
b = box_cxcywh_to_xyxy(out_bbox)
b = b * torch.tensor([img_w, img_h, img_w, img_h], dtype=torch.float32)
return b
# colors for visualization
COLORS = [[0.000, 0.447, 0.741], [0.850, 0.325, 0.098], [0.929, 0.694, 0.125],
[0.494, 0.184, 0.556], [0.466, 0.674, 0.188], [0.301, 0.745, 0.933]]
def apply_mask(image, mask, color, alpha=0.5):
"""Apply the given mask to the image.
"""
for c in range(3):
image[:, :, c] = np.where(mask == 1,
image[:, :, c] *
(1 - alpha) + alpha * color[c] * 255,
image[:, :, c])
return image
def plot_results(pil_img, scores, boxes, labels, masks=None):
plt.figure(figsize=(16, 10))
np_image = np.array(pil_img)
ax = plt.gca()
colors = COLORS * 100
if masks is None:
masks = [None for _ in range(len(scores))]
assert len(scores) == len(boxes) == len(labels) == len(masks)
for s, (xmin, ymin, xmax, ymax), l, mask, c in zip(scores, boxes.tolist(), labels, masks, colors):
ax.add_patch(plt.Rectangle((xmin, ymin), xmax - xmin, ymax - ymin,
fill=False, color=c, linewidth=3))
text = f'{l}: {s:0.2f}'
ax.text(xmin, ymin, text, fontsize=15, bbox=dict(facecolor='white', alpha=0.8))
if mask is None:
continue
np_image = apply_mask(np_image, mask, c)
padded_mask = np.zeros((mask.shape[0] + 2, mask.shape[1] + 2), dtype=np.uint8)
padded_mask[1:-1, 1:-1] = mask
contours = find_contours(padded_mask, 0.5)
for verts in contours:
# Subtract the padding and flip (y, x) to (x, y)
verts = np.fliplr(verts) - 1
p = Polygon(verts, facecolor="none", edgecolor=c)
ax.add_patch(p)
plt.imshow(np_image)
plt.axis('off')
plt.savefig('foo.png', bbox_inches='tight')
return 'foo.png'
def add_res(results, ax, color='green'):
# for tt in results.values():
if True:
bboxes = results['boxes']
labels = results['labels']
scores = results['scores']
# keep = scores >= 0.0
# bboxes = bboxes[keep].tolist()
# labels = labels[keep].tolist()
# scores = scores[keep].tolist()
# print(torchvision.ops.box_iou(tt['boxes'].cpu().detach(), torch.as_tensor([[xmin, ymin, xmax, ymax]])))
colors = ['purple', 'yellow', 'red', 'green', 'orange', 'pink']
for i, (b, ll, ss) in enumerate(zip(bboxes, labels, scores)):
ax.add_patch(plt.Rectangle((b[0], b[1]), b[2] - b[0], b[3] - b[1], fill=False, color=colors[i], linewidth=3))
cls_name = ll if isinstance(ll, str) else CLASSES[ll]
text = f'{cls_name}: {ss:.2f}'
print(text)
ax.text(b[0], b[1], text, fontsize=15, bbox=dict(facecolor='white', alpha=0.8))
def plot_inference(im, caption, approaches):
choices = {"Worker Helmet Separately": 1, "Worker Helmet Vest": 2, "Workers only": 3}
# mean-std normalize the input image (batch-size: 1)
img = transform(im).unsqueeze(0).cpu()
# propagate through the model
memory_cache = model2(img, [caption], encode_and_save=True)
outputs = model2(img, [caption], encode_and_save=False, memory_cache=memory_cache)
# keep only predictions with 0.7+ confidence
probas = 1 - outputs['pred_logits'].softmax(-1)[0, :, -1].cpu()
keep = (probas > 0.7).cpu()
# convert boxes from [0; 1] to image scales
bboxes_scaled = rescale_bboxes(outputs['pred_boxes'].cpu()[0, keep], im.size)
# Extract the text spans predicted by each box
positive_tokens = (outputs["pred_logits"].cpu()[0, keep].softmax(-1) > 0.1).nonzero().tolist()
predicted_spans = defaultdict(str)
for tok in positive_tokens:
item, pos = tok
if pos < 255:
span = memory_cache["tokenized"].token_to_chars(0, pos)
predicted_spans[item] += " " + caption[span.start:span.end]
labels = [predicted_spans[k] for k in sorted(list(predicted_spans.keys()))]
caption = 'Caption: ' + caption
return (sepia_call(caption, im, plot_results(im, probas[keep], bboxes_scaled, labels), choices[approaches]))
# BLIP Code
from modelsn.blip import blip_decoder
image_size = 384
transform = transforms.Compose([
transforms.Resize((image_size, image_size), interpolation=InterpolationMode.BICUBIC),
transforms.ToTensor(),
transforms.Normalize((0.48145466, 0.4578275, 0.40821073), (0.26862954, 0.26130258, 0.27577711))
])
model_url = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model*_base_caption.pth'
model = blip_decoder(pretrained=model_url, image_size=384, vit='base')
model.eval()
model = model.to(device)
from modelsn.blip_vqa import blip_vqa
image_size_vq = 480
transform_vq = transforms.Compose([
transforms.Resize((image_size_vq, image_size_vq), interpolation=InterpolationMode.BICUBIC),
transforms.ToTensor(),
transforms.Normalize((0.48145466, 0.4578275, 0.40821073), (0.26862954, 0.26130258, 0.27577711))
])
model_url_vq = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model*_vqa.pth'
model_vq = blip_vqa(pretrained=model_url_vq, image_size=480, vit='base')
model_vq.eval()
model_vq = model_vq.to(device)
def inference(raw_image, approaches, question):
image = transform(raw_image).unsqueeze(0).to(device)
with torch.no_grad():
caption = model.generate(image, sample=False, num_beams=3, max_length=20, min_length=5)
return (plot_inference(raw_image, caption[0], approaches))
# return 'caption: '+caption[0]
# PPE Detection code
import numpy as np
import run_code
import gradio as gr
def sepia_call(caption, Input_Image, MDETR_im, Approach):
pil_image = Input_Image
open_cv_image = np.asarray(pil_image)
sepia_img = run_code.run(open_cv_image, Approach)
images = sepia_img['img']
texts = sepia_img['text']
return (caption, MDETR_im, images, texts)
inputs = [gr.inputs.Image(type='pil'),
gr.inputs.Radio(choices=["Worker Helmet Separately", "Worker Helmet Vest", "Workers only"], type="value",
default="Worker Helmet Vest", label="Model"), "textbox"]
outputs = [gr.outputs.Textbox(label="Output"), "image", "image", gr.outputs.Textbox(label="Output")]
title = "BLIP + MDETR + PPE Detection"
description = "Gradio demo for BLIP: Bootstrapping Language-Image Pre-training for Unified Vision-Language Understanding and Generation by Salesforce Research. To use it, simply upload your image, or click one of the examples to load them. Read more at the links below."
article = "<p style='text-align: center'><a href='https://arxiv.org/abs/2201.12086' target='_blank'>BLIP: Bootstrapping Language-Image Pre-training for Unified Vision-Language Understanding and Generation</a> | <a href='https://github.com/salesforce/BLIP' target='_blank'>Github Repo</a></p>"
gr.Interface(inference, inputs, outputs, title=title, description=description, article=article,
examples=[['starry.jpg', "Image Captioning", "None"]]).launch(share=True, enable_queue=True,
cache_examples=False) |