File size: 8,877 Bytes
ba1cc7c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
import torch
from sacrebleu import corpus_bleu
from rouge_score import rouge_scorer
from bert_score import score
from transformers import GPT2LMHeadModel, GPT2Tokenizer, pipeline
import nltk
from nltk.util import ngrams
import pandas as pd

import torch
from sacrebleu import corpus_bleu
from rouge_score import rouge_scorer
from bert_score import score
from transformers import GPT2LMHeadModel, GPT2Tokenizer, pipeline
import nltk
from nltk.util import ngrams
import pandas as pd

def RAGEvaluator(df, selected_metrics):
    # Load models and pipelines
    gpt2_model = GPT2LMHeadModel.from_pretrained('gpt2')
    gpt2_tokenizer = GPT2Tokenizer.from_pretrained('gpt2')
    bias_pipeline = pipeline("zero-shot-classification", model="Hate-speech-CNERG/dehatebert-mono-english")
    scorer = rouge_scorer.RougeScorer(['rouge1', 'rouge2', 'rougeL'], use_stemmer=True)

    # Define metric evaluation functions
    def evaluate_bleu_rouge(candidates, references):
        bleu_score = corpus_bleu(candidates, [references]).score
        rouge_scores = [scorer.score(ref, cand) for ref, cand in zip(references, candidates)]
        rouge1 = sum([score['rouge1'].fmeasure for score in rouge_scores]) / len(rouge_scores)
        return bleu_score, rouge1

    def evaluate_bert_score(candidates, references):
        P, R, F1 = score(candidates, references, lang="en", model_type='bert-base-multilingual-cased')
        return P.mean().item(), R.mean().item(), F1.mean().item()

    def evaluate_perplexity(text):
        encodings = gpt2_tokenizer(text, return_tensors='pt')
        max_length = gpt2_model.config.n_positions
        stride = 512
        lls = []
        for i in range(0, encodings.input_ids.size(1), stride):
            begin_loc = max(i + stride - max_length, 0)
            end_loc = min(i + stride, encodings.input_ids.size(1))
            trg_len = end_loc - i
            input_ids = encodings.input_ids[:, begin_loc:end_loc]
            target_ids = input_ids.clone()
            target_ids[:, :-trg_len] = -100
            with torch.no_grad():
                outputs = gpt2_model(input_ids, labels=target_ids)
                log_likelihood = outputs[0] * trg_len
            lls.append(log_likelihood)
        ppl = torch.exp(torch.stack(lls).sum() / end_loc)
        return ppl.item()

    def evaluate_diversity(texts):
        all_tokens = [tok for text in texts for tok in text.split()]
        unique_bigrams = set(ngrams(all_tokens, 2))
        diversity_score = len(unique_bigrams) / len(all_tokens) if all_tokens else 0
        return diversity_score

    def evaluate_racial_bias(text):
        results = bias_pipeline([text], candidate_labels=["hate speech", "not hate speech"])
        bias_score = results[0]['scores'][results[0]['labels'].index('hate speech')]
        return bias_score

    # Process each row and add selected metric results to the DataFrame
    for idx, row in df.iterrows():
        question, answer, contexts = row['question'], row['answer'], row['contexts']
        candidates = [answer]
        references = [contexts]

        # Calculate metrics as per the selected metrics list and add them as columns in the DataFrame
        if "BLEU" in selected_metrics or "ROUGE-1" in selected_metrics:
            bleu, rouge1 = evaluate_bleu_rouge(candidates, references)
            if "BLEU" in selected_metrics:
                df.at[idx, "BLEU"] = bleu
            if "ROUGE-1" in selected_metrics:
                df.at[idx, "ROUGE-1"] = rouge1
        if "BERT Precision" in selected_metrics or "BERT Recall" in selected_metrics or "BERT F1" in selected_metrics:
            bert_p, bert_r, bert_f1 = evaluate_bert_score(candidates, references)
            if "BERT Precision" in selected_metrics:
                df.at[idx, "BERT Precision"] = bert_p
            if "BERT Recall" in selected_metrics:
                df.at[idx, "BERT Recall"] = bert_r
            if "BERT F1" in selected_metrics:
                df.at[idx, "BERT F1"] = bert_f1
        if "Perplexity" in selected_metrics:
            df.at[idx, "Perplexity"] = evaluate_perplexity(answer)
        if "Diversity" in selected_metrics:
            df.at[idx, "Diversity"] = evaluate_diversity(candidates)
        if "Racial Bias" in selected_metrics:
            df.at[idx, "Racial Bias"] = evaluate_racial_bias(answer)

    return df


# def RAGEvaluator(df, selected_metrics):
#     # Load models and pipelines
#     gpt2_model = GPT2LMHeadModel.from_pretrained('gpt2')
#     gpt2_tokenizer = GPT2Tokenizer.from_pretrained('gpt2')
#     bias_pipeline = pipeline("zero-shot-classification", model="Hate-speech-CNERG/dehatebert-mono-english")
#     scorer = rouge_scorer.RougeScorer(['rouge1', 'rouge2', 'rougeL'], use_stemmer=True)
    
#     # Function definitions for evaluations
#     def evaluate_bleu_rouge(candidates, references):
#         bleu_score = corpus_bleu(candidates, [references]).score
#         rouge_scores = [scorer.score(ref, cand) for ref, cand in zip(references, candidates)]
#         rouge1 = sum([score['rouge1'].fmeasure for score in rouge_scores]) / len(rouge_scores)
#         return bleu_score, rouge1

#     def evaluate_bert_score(candidates, references):
#         P, R, F1 = score(candidates, references, lang="en", model_type='bert-base-multilingual-cased')
#         return P.mean().item(), R.mean().item(), F1.mean().item()

#     def evaluate_perplexity(text):
#         encodings = gpt2_tokenizer(text, return_tensors='pt')
#         max_length = gpt2_model.config.n_positions
#         stride = 512
#         lls = []
#         for i in range(0, encodings.input_ids.size(1), stride):
#             begin_loc = max(i + stride - max_length, 0)
#             end_loc = min(i + stride, encodings.input_ids.size(1))
#             trg_len = end_loc - i
#             input_ids = encodings.input_ids[:, begin_loc:end_loc]
#             target_ids = input_ids.clone()
#             target_ids[:, :-trg_len] = -100
#             with torch.no_grad():
#                 outputs = gpt2_model(input_ids, labels=target_ids)
#                 log_likelihood = outputs[0] * trg_len
#             lls.append(log_likelihood)
#         ppl = torch.exp(torch.stack(lls).sum() / end_loc)
#         return ppl.item()

#     def evaluate_diversity(texts):
#         all_tokens = [tok for text in texts for tok in text.split()]
#         unique_bigrams = set(ngrams(all_tokens, 2))
#         diversity_score = len(unique_bigrams) / len(all_tokens) if all_tokens else 0
#         return diversity_score

#     def evaluate_racial_bias(text):
#         results = bias_pipeline([text], candidate_labels=["hate speech", "not hate speech"])
#         bias_score = results[0]['scores'][results[0]['labels'].index('hate speech')]
#         return bias_score

#     # Dictionary to store results for each metric per row
#     metrics_data = {metric: [] for metric in selected_metrics}

#     # Evaluate each row in the DataFrame
#     for idx, row in df.iterrows():
#         question, answer, contexts = row['question'], row['answer'], row['contexts']
#         candidates = [answer]
#         references = [contexts]

#         # Collect metrics conditionally based on selected_metrics
#         if 'BLEU' in selected_metrics or 'ROUGE-1' in selected_metrics:
#             bleu, rouge1 = evaluate_bleu_rouge(candidates, references)
#             if 'BLEU' in selected_metrics:
#                 metrics_data['BLEU'].append(bleu)
#             if 'ROUGE-1' in selected_metrics:
#                 metrics_data['ROUGE-1'].append(rouge1)

#         if 'BERT Precision' in selected_metrics or 'BERT Recall' in selected_metrics or 'BERT F1' in selected_metrics:
#             bert_p, bert_r, bert_f1 = evaluate_bert_score(candidates, references)
#             if 'BERT Precision' in selected_metrics:
#                 metrics_data['BERT Precision'].append(bert_p)
#             if 'BERT Recall' in selected_metrics:
#                 metrics_data['BERT Recall'].append(bert_r)
#             if 'BERT F1' in selected_metrics:
#                 metrics_data['BERT F1'].append(bert_f1)

#         if 'Perplexity' in selected_metrics:
#             perplexity = evaluate_perplexity(answer)
#             metrics_data['Perplexity'].append(perplexity)

#         if 'Diversity' in selected_metrics:
#             diversity = evaluate_diversity(candidates)
#             metrics_data['Diversity'].append(diversity)

#         if 'Racial Bias' in selected_metrics:
#             racial_bias = evaluate_racial_bias(answer)
#             metrics_data['Racial Bias'].append(racial_bias)

#     # Convert metrics_data dictionary to a DataFrame
#     metrics_df = pd.DataFrame(metrics_data)

#     # Concatenate original DataFrame with metrics DataFrame
#     result_df = pd.concat([df.reset_index(drop=True), metrics_df], axis=1)

#     return result_df