first start for osiris
Browse files
app.py
ADDED
@@ -0,0 +1,44 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import gradio as gr
|
3 |
+
from diffusers import DiffusionPipeline
|
4 |
+
import os
|
5 |
+
|
6 |
+
# UI
|
7 |
+
DESCRIPTION = '''
|
8 |
+
<div>
|
9 |
+
<h1 style="text-align: center;">Osiris π¦₯</h1>
|
10 |
+
<p>This has an open source stable diffuser from <a href="https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0"><b>stable-diffusion-xl-base-1.0</b></a></p>
|
11 |
+
</div>
|
12 |
+
'''
|
13 |
+
|
14 |
+
# pipeline
|
15 |
+
pipeline = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16, use_safetensors=True, variant="fp16").to('cuda')
|
16 |
+
|
17 |
+
# function to take input and generate text tokena
|
18 |
+
def osiris(prompt: str,
|
19 |
+
history: list,
|
20 |
+
temperature: float,
|
21 |
+
max_new_tokens: int):
|
22 |
+
"""
|
23 |
+
Takes input, passes it into the pipeline,
|
24 |
+
get the top 5 scores, and ouput those scores into images
|
25 |
+
"""
|
26 |
+
|
27 |
+
# Generate image based on text
|
28 |
+
image = pipeline(prompt=prompt).images[0]
|
29 |
+
|
30 |
+
return image
|
31 |
+
|
32 |
+
with gr.Blocks(fill_height=True) as demo:
|
33 |
+
gr.Markdown(DESCRIPTION)
|
34 |
+
gr.Interface(
|
35 |
+
fn=osiris,
|
36 |
+
inputs="text",
|
37 |
+
outputs="image",
|
38 |
+
fill_height=True,
|
39 |
+
# additional_inputs_accordion=gr.Accordion(label="βοΈ Parameters", open=False, render=False),
|
40 |
+
# additional_inputs=[]
|
41 |
+
)
|
42 |
+
|
43 |
+
if __name__ == "__main__":
|
44 |
+
demo.launch()
|