sandz7 commited on
Commit
a0c513d
Β·
verified Β·
1 Parent(s): 46c2ef7

replaced the terminator values to origin and replaced the transformer to instruct version

Browse files
Files changed (1) hide show
  1. app.py +4 -19
app.py CHANGED
@@ -1,18 +1,11 @@
1
  import torch
2
- import pandas as pd
3
- import numpy as np
4
  import gradio as gr
5
- import re
6
  from transformers import AutoTokenizer, AutoModelForCausalLM, TextIteratorStreamer
7
- import re
8
- from huggingface_hub import login
9
  import os
10
  from threading import Thread
11
 
12
  # HF_TOKEN
13
- TOKEN = os.getenv('HF_AUTH_TOKEN')
14
- login(token=TOKEN,
15
- add_to_git_credential=False)
16
 
17
  # Open ai api key
18
  API_KEY = os.getenv('OPEN_AI_API_KEY')
@@ -25,21 +18,13 @@ DESCRIPTION = '''
25
  '''
26
 
27
  # Place transformers in hardware to prepare for process and generation
28
- llama_tokenizer = AutoTokenizer.from_pretrained("meta-llama/Meta-Llama-3-8B")
29
- llama_model = AutoModelForCausalLM.from_pretrained("meta-llama/Meta-Llama-3-8B", token=TOKEN, torch_dtype=torch.float16).to('cuda')
30
  terminators = [
31
  llama_tokenizer.eos_token_id,
32
- # Remove this line, as an empty string won't convert to a valid token ID
33
- # llama_tokenizer.convert_tokens_to_ids("")
34
  ]
35
 
36
- # Get special tokens list from the tokenizer
37
- special_tokens = llama_tokenizer.special_tokens_map
38
- eos_token = special_tokens.get("eos_token")
39
-
40
- print("Default EOS Token:", eos_token)
41
-
42
-
43
 
44
  # Place just input pass and return generation output
45
  def llama_generation(input_text: str,
 
1
  import torch
 
 
2
  import gradio as gr
 
3
  from transformers import AutoTokenizer, AutoModelForCausalLM, TextIteratorStreamer
 
 
4
  import os
5
  from threading import Thread
6
 
7
  # HF_TOKEN
8
+ HF_AUTH_TOKEN = os.getenv('HF_AUTH_TOKEN')
 
 
9
 
10
  # Open ai api key
11
  API_KEY = os.getenv('OPEN_AI_API_KEY')
 
18
  '''
19
 
20
  # Place transformers in hardware to prepare for process and generation
21
+ llama_tokenizer = AutoTokenizer.from_pretrained("meta-llama/Meta-Llama-3-8B-Instruct")
22
+ llama_model = AutoModelForCausalLM.from_pretrained("meta-llama/Meta-Llama-3-8B-Instruct", torch_dtype=torch.float16).to('cuda')
23
  terminators = [
24
  llama_tokenizer.eos_token_id,
25
+ llama_tokenizer.convert_tokens_to_ids("<|eot_id|>")
 
26
  ]
27
 
 
 
 
 
 
 
 
28
 
29
  # Place just input pass and return generation output
30
  def llama_generation(input_text: str,