added terminators, params on generations and a thread with steamer to finalize also a sliding feature on UI
Browse files
app.py
CHANGED
@@ -3,10 +3,11 @@ import pandas as pd
|
|
3 |
import numpy as np
|
4 |
import gradio as gr
|
5 |
import re
|
6 |
-
from transformers import AutoTokenizer, AutoModelForCausalLM
|
7 |
import re
|
8 |
from huggingface_hub import login
|
9 |
import os
|
|
|
10 |
|
11 |
# HF_TOKEN
|
12 |
TOKEN = os.getenv('HF_AUTH_TOKEN')
|
@@ -26,33 +27,53 @@ DESCRIPTION = '''
|
|
26 |
# Place transformers in hardware to prepare for process and generation
|
27 |
llama_tokenizer = AutoTokenizer.from_pretrained("meta-llama/Meta-Llama-3-8B")
|
28 |
llama_model = AutoModelForCausalLM.from_pretrained("meta-llama/Meta-Llama-3-8B", token=TOKEN, torch_dtype=torch.float16).to('cuda')
|
|
|
|
|
|
|
|
|
29 |
|
30 |
# Place just input pass and return generation output
|
31 |
def llama_generation(input_text: str,
|
32 |
-
history
|
|
|
|
|
33 |
"""
|
34 |
Pass input texts, tokenize, output and back to text.
|
35 |
"""
|
36 |
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
#
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
56 |
|
57 |
# Let's just make sure the llama is returning as it should and than place that return output into a function making it fit into a base
|
58 |
# Prompt for gpt-4o
|
@@ -65,6 +86,24 @@ with gr.Blocks(fill_height=True) as demo:
|
|
65 |
fn=llama_generation,
|
66 |
chatbot=chatbot,
|
67 |
fill_height=True,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
68 |
examples=["Make a poem of batman inside willy wonka",
|
69 |
"How can you a burrito with just flour?",
|
70 |
"How was saturn formed in 3 sentences",
|
|
|
3 |
import numpy as np
|
4 |
import gradio as gr
|
5 |
import re
|
6 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM, TextIteratorStreamer
|
7 |
import re
|
8 |
from huggingface_hub import login
|
9 |
import os
|
10 |
+
from threading import Thread
|
11 |
|
12 |
# HF_TOKEN
|
13 |
TOKEN = os.getenv('HF_AUTH_TOKEN')
|
|
|
27 |
# Place transformers in hardware to prepare for process and generation
|
28 |
llama_tokenizer = AutoTokenizer.from_pretrained("meta-llama/Meta-Llama-3-8B")
|
29 |
llama_model = AutoModelForCausalLM.from_pretrained("meta-llama/Meta-Llama-3-8B", token=TOKEN, torch_dtype=torch.float16).to('cuda')
|
30 |
+
terminators = [
|
31 |
+
llama_tokenizer.eos_token_id,
|
32 |
+
llama_tokenizer.convert_tokens_to_ids("<|eot_id|>")
|
33 |
+
]
|
34 |
|
35 |
# Place just input pass and return generation output
|
36 |
def llama_generation(input_text: str,
|
37 |
+
history: list,
|
38 |
+
temperature: float,
|
39 |
+
max_new_tokens: int):
|
40 |
"""
|
41 |
Pass input texts, tokenize, output and back to text.
|
42 |
"""
|
43 |
|
44 |
+
conversation = []
|
45 |
+
for user, assistant in history:
|
46 |
+
conversation.extend([{"role": "user", "content": user}, {"role": "assistant", "content": assistant}])
|
47 |
+
conversation.append({"role": "user", "content": input_text})
|
48 |
+
|
49 |
+
input_ids = llama_tokenizer.apply_chat_template(conversation, return_tensors='pt').to(llama_model.device)
|
50 |
+
|
51 |
+
# Skip_prompt, ignores the prompt in the chatbot
|
52 |
+
streamer = TextIteratorStreamer(llama_tokenizer, skip_prompt=True, skip_special_tokens=True)
|
53 |
+
|
54 |
+
# generation arguments to pass in llm generate() eventually
|
55 |
+
generate_kwargs = dict(
|
56 |
+
input_ids=input_ids,
|
57 |
+
streamer=streamer,
|
58 |
+
max_new_tokens=max_new_tokens,
|
59 |
+
do_sample=True,
|
60 |
+
temperature=temperature,
|
61 |
+
eos_token_id=terminators
|
62 |
+
)
|
63 |
+
|
64 |
+
# This makes a greedy generation when temperature is passed to 0 (selects the next token sequence generated by model regardless). Selects each token with the highest probability
|
65 |
+
if temperature == 0:
|
66 |
+
generate_kwargs["do_sample"] = False
|
67 |
+
|
68 |
+
# In order to use the generate_kwargs we need to place it in a thread which can also allow the UI to run different commands even when the model is generating
|
69 |
+
# place the function as target and place the kwargs next as the kwargs
|
70 |
+
thread = Thread(target=llama_model.generate, kwargs=generate_kwargs)
|
71 |
+
thread.start()
|
72 |
+
|
73 |
+
outputs = []
|
74 |
+
for text in streamer:
|
75 |
+
outputs.append(text)
|
76 |
+
return "".join(outputs)
|
77 |
|
78 |
# Let's just make sure the llama is returning as it should and than place that return output into a function making it fit into a base
|
79 |
# Prompt for gpt-4o
|
|
|
86 |
fn=llama_generation,
|
87 |
chatbot=chatbot,
|
88 |
fill_height=True,
|
89 |
+
# These will effect the parameters args and kwargs inside the llama_generation function, that the ui can interact with from the code
|
90 |
+
additional_inputs_accordion=gr.Accordion(label="βοΈ Parameters", open=False, render=False),
|
91 |
+
additional_inputs=[
|
92 |
+
# Slider feature users can interactive to effect the temperature of model
|
93 |
+
gr.Slider(minimum=0,
|
94 |
+
maximum=1,
|
95 |
+
step=0.1,
|
96 |
+
value=0.95,
|
97 |
+
label="Temperature",
|
98 |
+
render=False),
|
99 |
+
# Sliding feature for the max tokens for generation on model
|
100 |
+
gr.Slider(minimum=128,
|
101 |
+
maximum=1500,
|
102 |
+
step=1,
|
103 |
+
value=512,
|
104 |
+
label="Max new tokens",
|
105 |
+
render=False),
|
106 |
+
],
|
107 |
examples=["Make a poem of batman inside willy wonka",
|
108 |
"How can you a burrito with just flour?",
|
109 |
"How was saturn formed in 3 sentences",
|