just returned the streamers into the bot_coms and just yielded the text
Browse files
app.py
CHANGED
@@ -77,8 +77,7 @@ def gpt_generation(input: str,
|
|
77 |
def llama_generation(input_text: str,
|
78 |
history: list,
|
79 |
temperature: float,
|
80 |
-
max_new_tokens: int
|
81 |
-
mode: str):
|
82 |
"""
|
83 |
Pass input texts, tokenize, output and back to text.
|
84 |
"""
|
@@ -111,56 +110,7 @@ def llama_generation(input_text: str,
|
|
111 |
thread = Thread(target=llama_model.generate, kwargs=generate_kwargs)
|
112 |
thread.start()
|
113 |
|
114 |
-
|
115 |
-
# for text in streamer:
|
116 |
-
# outputs.append(text)
|
117 |
-
# yield "".join(outputs)
|
118 |
-
|
119 |
-
text = [text for text in streamer]
|
120 |
-
output_text = output_list(text)
|
121 |
-
print("llama mode was on.")
|
122 |
-
return output_text, streamer
|
123 |
-
|
124 |
-
# conversation = []
|
125 |
-
# for user, assistant in history:
|
126 |
-
# conversation.extend([{"role": "user", "content": user}, {"role": "assistant", "content": assistant}])
|
127 |
-
# conversation.append({"role": "user", "content": input_text})
|
128 |
-
|
129 |
-
# input_ids = llama_tokenizer.apply_chat_template(conversation, return_tensors='pt').to(llama_model.device)
|
130 |
-
|
131 |
-
# streamer = TextIteratorStreamer(llama_tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True)
|
132 |
-
|
133 |
-
# # generation arguments to pass in llm generate() eventually
|
134 |
-
# generate_kwargs = dict(
|
135 |
-
# input_ids=input_ids,
|
136 |
-
# streamer=streamer,
|
137 |
-
# max_new_tokens=max_new_tokens,
|
138 |
-
# do_sample=True,
|
139 |
-
# temperature=temperature,
|
140 |
-
# eos_token_id=terminators[0]
|
141 |
-
# )
|
142 |
-
|
143 |
-
# # This makes a greedy generation when temperature is passed to 0 (selects the next token sequence generated by model regardless). Selects each token with the highest probability
|
144 |
-
# if temperature == 0:
|
145 |
-
# generate_kwargs["do_sample"] = False
|
146 |
-
|
147 |
-
# # Place the generation in a thread so we can access it.
|
148 |
-
# # place the function as target and place the kwargs next as the kwargs
|
149 |
-
# thread = Thread(target=llama_model.generate, kwargs=generate_kwargs)
|
150 |
-
# thread.start()
|
151 |
-
|
152 |
-
# llama_outputs = [text for text in streamer]
|
153 |
-
# output_text = output_list(llama_outputs)
|
154 |
-
# stream = gpt_generation(input=input_text, llama_output=output_text)
|
155 |
-
# print("loki mode was on.")
|
156 |
-
# return stream
|
157 |
-
# outputs = []
|
158 |
-
# for chunk in stream:
|
159 |
-
# if chunk.choices[0].delta.content is not None:
|
160 |
-
# text = chunk.choices[0].delta.content
|
161 |
-
# outputs.append(text)
|
162 |
-
# yield "".join(outputs)
|
163 |
-
|
164 |
|
165 |
def check_cuda():
|
166 |
if torch.cuda.is_available():
|
@@ -171,13 +121,6 @@ def check_cuda():
|
|
171 |
first_time = True
|
172 |
llm_mode = ""
|
173 |
|
174 |
-
# # Async generator function
|
175 |
-
# async def async_generator():
|
176 |
-
# for i in range(5):
|
177 |
-
# # Simulate an asynchronous operation
|
178 |
-
# await asyncio.sleep(1)
|
179 |
-
# yield i
|
180 |
-
|
181 |
def bot_comms(input_text: str,
|
182 |
history: list,
|
183 |
temperature: float,
|
@@ -211,20 +154,12 @@ def bot_comms(input_text: str,
|
|
211 |
yield "Done. GPT-3.5-turbo is ready for your questions! π"
|
212 |
|
213 |
if llm_mode == "switch to llama":
|
214 |
-
|
215 |
-
history=history,
|
216 |
-
temperature=temperature,
|
217 |
-
max_new_tokens=max_new_tokens,
|
218 |
-
mode="llama")
|
219 |
-
outputs = []
|
220 |
for text in streamer:
|
221 |
-
|
222 |
-
yield "".join(outputs)
|
223 |
|
224 |
if llm_mode == "switch to gpt-4o":
|
225 |
-
stream = gpt_generation(input=input_text,
|
226 |
-
llama_output="",
|
227 |
-
mode="gpt-4o")
|
228 |
outputs = []
|
229 |
print("gpt-4o only about to answer.")
|
230 |
for chunk in stream:
|
@@ -234,9 +169,7 @@ def bot_comms(input_text: str,
|
|
234 |
yield "".join(outputs)
|
235 |
|
236 |
if llm_mode == "switch to gpt-3.5-turbo":
|
237 |
-
stream = gpt_generation(input=input_text,
|
238 |
-
llama_output="",
|
239 |
-
mode="gpt-3.5-turbo")
|
240 |
outputs = []
|
241 |
print("gpt-3.5-turbo is about to answer.")
|
242 |
for chunk in stream:
|
@@ -245,31 +178,18 @@ def bot_comms(input_text: str,
|
|
245 |
outputs.append(text)
|
246 |
yield "".join(outputs)
|
247 |
|
248 |
-
if llm_mode is None:
|
249 |
-
|
250 |
-
|
251 |
-
|
252 |
-
max_new_tokens=max_new_tokens,
|
253 |
-
mode="loki")
|
254 |
-
stream = gpt_generation(input=input_text,
|
255 |
-
llama_output=output_text,
|
256 |
-
mode="gpt-4o")
|
257 |
|
258 |
outputs = []
|
259 |
-
print("Loki is
|
260 |
-
for
|
261 |
-
|
262 |
-
|
263 |
-
|
264 |
-
|
265 |
-
# async def main():
|
266 |
-
# async for value in async_generator():
|
267 |
-
# print(value)
|
268 |
-
# # Add your existing logic here, e.g., call bot_comms with appropriate arguments
|
269 |
-
# await bot_comms(input_text="example", history=[], temperature=0.5, max_new_tokens=128)
|
270 |
-
|
271 |
-
# Rune async function
|
272 |
-
# asyncio.run(main())
|
273 |
|
274 |
chatbot=gr.Chatbot(height=600, label="Loki AI")
|
275 |
|
|
|
77 |
def llama_generation(input_text: str,
|
78 |
history: list,
|
79 |
temperature: float,
|
80 |
+
max_new_tokens: int):
|
|
|
81 |
"""
|
82 |
Pass input texts, tokenize, output and back to text.
|
83 |
"""
|
|
|
110 |
thread = Thread(target=llama_model.generate, kwargs=generate_kwargs)
|
111 |
thread.start()
|
112 |
|
113 |
+
return streamer
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
114 |
|
115 |
def check_cuda():
|
116 |
if torch.cuda.is_available():
|
|
|
121 |
first_time = True
|
122 |
llm_mode = ""
|
123 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
124 |
def bot_comms(input_text: str,
|
125 |
history: list,
|
126 |
temperature: float,
|
|
|
154 |
yield "Done. GPT-3.5-turbo is ready for your questions! π"
|
155 |
|
156 |
if llm_mode == "switch to llama":
|
157 |
+
streamer = llama_generation(input_text=input_text, history=history, temperature=temperature, max_new_tokens=max_new_tokens)
|
|
|
|
|
|
|
|
|
|
|
158 |
for text in streamer:
|
159 |
+
yield text
|
|
|
160 |
|
161 |
if llm_mode == "switch to gpt-4o":
|
162 |
+
stream = gpt_generation(input=input_text, llama_output="", mode="gpt-4o")
|
|
|
|
|
163 |
outputs = []
|
164 |
print("gpt-4o only about to answer.")
|
165 |
for chunk in stream:
|
|
|
169 |
yield "".join(outputs)
|
170 |
|
171 |
if llm_mode == "switch to gpt-3.5-turbo":
|
172 |
+
stream = gpt_generation(input=input_text, llama_output="", mode="gpt-3.5-turbo")
|
|
|
|
|
173 |
outputs = []
|
174 |
print("gpt-3.5-turbo is about to answer.")
|
175 |
for chunk in stream:
|
|
|
178 |
outputs.append(text)
|
179 |
yield "".join(outputs)
|
180 |
|
181 |
+
if llm_mode is None or llm_mode == "":
|
182 |
+
streamer = llama_generation(input_text=input_text, history=history, temperature=temperature, max_new_tokens=max_new_tokens)
|
183 |
+
output_text = output_list([text for text in streamer])
|
184 |
+
stream = gpt_generation(input=input_text, llama_output=output_text, mode="gpt-4o")
|
|
|
|
|
|
|
|
|
|
|
185 |
|
186 |
outputs = []
|
187 |
+
print("Loki is activated to answer")
|
188 |
+
for chunk in stream:
|
189 |
+
if chunk.choices[0].delta.content is not None:
|
190 |
+
text = chunk.choices[0].delta.content
|
191 |
+
outputs.append(text)
|
192 |
+
yield "".join(outputs)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
193 |
|
194 |
chatbot=gr.Chatbot(height=600, label="Loki AI")
|
195 |
|