loki / app.py
sandz7's picture
made a list over the example list
e8bc467
raw
history blame
4.5 kB
import torch
import pandas as pd
import numpy as np
import gradio as gr
import re
from transformers import AutoTokenizer, AutoModelForCausalLM, TextIteratorStreamer
import re
from huggingface_hub import login
import os
from threading import Thread
# HF_TOKEN
TOKEN = os.getenv('HF_AUTH_TOKEN')
login(token=TOKEN,
add_to_git_credential=False)
# Open ai api key
API_KEY = os.getenv('OPEN_AI_API_KEY')
DESCRIPTION = '''
<div>
<h1 style="text-align: center;">Amphisbeana 🐍</h1>
<p>This uses Llama 3 and GPT-4o as generation, both of these make the final generation. <a href="https://huggingface.co/meta-llama/Meta-Llama-3-8B"><b>Llama3-8b</b></a>and <a href="https://platform.openai.com/docs/models/gpt-4o"><b>GPT-4o</b></a></p>
</div>
'''
# Place transformers in hardware to prepare for process and generation
llama_tokenizer = AutoTokenizer.from_pretrained("meta-llama/Meta-Llama-3-8B")
llama_model = AutoModelForCausalLM.from_pretrained("meta-llama/Meta-Llama-3-8B", token=TOKEN, torch_dtype=torch.float16).to('cuda')
terminators = [
llama_tokenizer.eos_token_id,
llama_tokenizer.convert_tokens_to_ids("<|eot_id|>")
]
# Place just input pass and return generation output
def llama_generation(input_text: str,
history: list,
temperature: float,
max_new_tokens: int):
"""
Pass input texts, tokenize, output and back to text.
"""
conversation = []
for user, assistant in history:
conversation.extend([{"role": "user", "content": user}, {"role": "assistant", "content": assistant}])
conversation.append({"role": "user", "content": input_text})
input_ids = llama_tokenizer.apply_chat_template(conversation, return_tensors='pt').to(llama_model.device)
# Skip_prompt, ignores the prompt in the chatbot
streamer = TextIteratorStreamer(llama_tokenizer, skip_prompt=True, skip_special_tokens=True)
# generation arguments to pass in llm generate() eventually
generate_kwargs = dict(
input_ids=input_ids,
streamer=streamer,
max_new_tokens=max_new_tokens,
do_sample=True,
temperature=temperature,
eos_token_id=terminators
)
# This makes a greedy generation when temperature is passed to 0 (selects the next token sequence generated by model regardless). Selects each token with the highest probability
if temperature == 0:
generate_kwargs["do_sample"] = False
# In order to use the generate_kwargs we need to place it in a thread which can also allow the UI to run different commands even when the model is generating
# place the function as target and place the kwargs next as the kwargs
thread = Thread(target=llama_model.generate, kwargs=generate_kwargs)
thread.start()
outputs = []
for text in streamer:
outputs.append(text)
return "".join(outputs)
# Let's just make sure the llama is returning as it should and than place that return output into a function making it fit into a base
# Prompt for gpt-4o
chatbot=gr.Chatbot(height=600, label="Amphisbeana AI")
with gr.Blocks(fill_height=True) as demo:
gr.Markdown(DESCRIPTION)
gr.ChatInterface(
fn=llama_generation,
chatbot=chatbot,
fill_height=True,
# These will effect the parameters args and kwargs inside the llama_generation function, that the ui can interact with from the code
additional_inputs_accordion=gr.Accordion(label="βš™οΈ Parameters", open=False, render=False),
additional_inputs=[
# Slider feature users can interactive to effect the temperature of model
gr.Slider(minimum=0,
maximum=1,
step=0.1,
value=0.95,
label="Temperature",
render=False),
# Sliding feature for the max tokens for generation on model
gr.Slider(minimum=128,
maximum=1500,
step=1,
value=512,
label="Max new tokens",
render=False),
],
examples=[
["Make a poem of batman inside willy wonka"],
["How can you a burrito with just flour?"],
["How was saturn formed in 3 sentences"],
["How does the frontal lobe effect playing soccer"],
],
cache_examples=False
)
if __name__ == "__main__":
demo.launch()