|
import torch |
|
import pandas as pd |
|
import numpy as np |
|
import gradio as gr |
|
import re |
|
from transformers import AutoTokenizer, AutoModelForCausalLM, TextIteratorStreamer |
|
import re |
|
from huggingface_hub import login |
|
import os |
|
from threading import Thread |
|
|
|
|
|
TOKEN = os.getenv('HF_AUTH_TOKEN') |
|
login(token=TOKEN, |
|
add_to_git_credential=False) |
|
|
|
|
|
API_KEY = os.getenv('OPEN_AI_API_KEY') |
|
|
|
DESCRIPTION = ''' |
|
<div> |
|
<h1 style="text-align: center;">Amphisbeana π</h1> |
|
<p>This uses Llama 3 and GPT-4o as generation, both of these make the final generation. <a href="https://huggingface.co/meta-llama/Meta-Llama-3-8B"><b>Llama3-8b</b></a>and <a href="https://platform.openai.com/docs/models/gpt-4o"><b>GPT-4o</b></a></p> |
|
</div> |
|
''' |
|
|
|
|
|
llama_tokenizer = AutoTokenizer.from_pretrained("meta-llama/Meta-Llama-3-8B") |
|
llama_model = AutoModelForCausalLM.from_pretrained("meta-llama/Meta-Llama-3-8B", token=TOKEN, torch_dtype=torch.float16).to('cuda') |
|
terminators = [ |
|
llama_tokenizer.eos_token_id, |
|
llama_tokenizer.convert_tokens_to_ids("<|eot_id|>") |
|
] |
|
|
|
|
|
def llama_generation(input_text: str, |
|
history: list, |
|
temperature: float, |
|
max_new_tokens: int): |
|
""" |
|
Pass input texts, tokenize, output and back to text. |
|
""" |
|
|
|
conversation = [] |
|
for user, assistant in history: |
|
conversation.extend([{"role": "user", "content": user}, {"role": "assistant", "content": assistant}]) |
|
conversation.append({"role": "user", "content": input_text}) |
|
|
|
input_ids = llama_tokenizer.apply_chat_template(conversation, return_tensors='pt').to(llama_model.device) |
|
|
|
|
|
streamer = TextIteratorStreamer(llama_tokenizer, skip_prompt=True, skip_special_tokens=True) |
|
|
|
|
|
generate_kwargs = dict( |
|
input_ids=input_ids, |
|
streamer=streamer, |
|
max_new_tokens=max_new_tokens, |
|
do_sample=True, |
|
temperature=temperature, |
|
eos_token_id=terminators |
|
) |
|
|
|
|
|
if temperature == 0: |
|
generate_kwargs["do_sample"] = False |
|
|
|
|
|
|
|
thread = Thread(target=llama_model.generate, kwargs=generate_kwargs) |
|
thread.start() |
|
|
|
outputs = [] |
|
for text in streamer: |
|
outputs.append(text) |
|
return "".join(outputs) |
|
|
|
|
|
|
|
|
|
chatbot=gr.Chatbot(height=600, label="Amphisbeana AI") |
|
|
|
with gr.Blocks(fill_height=True) as demo: |
|
gr.Markdown(DESCRIPTION) |
|
gr.ChatInterface( |
|
fn=llama_generation, |
|
chatbot=chatbot, |
|
fill_height=True, |
|
|
|
additional_inputs_accordion=gr.Accordion(label="βοΈ Parameters", open=False, render=False), |
|
additional_inputs=[ |
|
|
|
gr.Slider(minimum=0, |
|
maximum=1, |
|
step=0.1, |
|
value=0.95, |
|
label="Temperature", |
|
render=False), |
|
|
|
gr.Slider(minimum=128, |
|
maximum=1500, |
|
step=1, |
|
value=512, |
|
label="Max new tokens", |
|
render=False), |
|
], |
|
examples=[ |
|
["Make a poem of batman inside willy wonka"], |
|
["How can you a burrito with just flour?"], |
|
["How was saturn formed in 3 sentences"], |
|
["How does the frontal lobe effect playing soccer"], |
|
], |
|
cache_examples=False |
|
) |
|
|
|
if __name__ == "__main__": |
|
demo.launch() |