opencv-gui / src /hand_tracker.py
samuellimabraz's picture
Add initial project structure with OpenCV and Mediapipe integration
ae1809b unverified
raw
history blame
14.1 kB
import math
import os
import urllib.request
import cv2
import numpy as np
import mediapipe as mp
from mediapipe.tasks import python
from mediapipe.tasks.python import vision
from mediapipe.framework.formats import landmark_pb2
class HandTracker:
def __init__(
self,
model: str = None,
num_hands: int = 2,
min_hand_detection_confidence: float = 0.5,
min_hand_presence_confidence: float = 0.5,
min_tracking_confidence: float = 0.5,
):
"""
Initialize a HandTracker instance.
Args:
model (str): The path to the model for hand tracking.
num_hands (int): Maximum number of hands to detect.
min_hand_detection_confidence (float): Minimum confidence value ([0.0, 1.0]) for successful hand detection.
min_hand_presence_confidence (float): Minimum confidence value ([0.0, 1.0]) for presence of a hand to be tracked.
min_tracking_confidence (float): Minimum confidence value ([0.0, 1.0]) for successful hand landmark tracking.
"""
self.model = model
if self.model is None:
self.model = self.download_model()
self.detector = self.initialize_detector(
num_hands,
min_hand_detection_confidence,
min_hand_presence_confidence,
min_tracking_confidence,
)
self.mp_hands = mp.solutions.hands
self.mp_drawing = mp.solutions.drawing_utils
self.mp_drawing_styles = mp.solutions.drawing_styles
self.DETECTION_RESULT = None
self.tipIds = [4, 8, 12, 16, 20]
self.MARGIN = 10 # pixels
self.FONT_SIZE = 1
self.FONT_THICKNESS = 1
self.HANDEDNESS_TEXT_COLOR = (88, 205, 54) # vibrant green
# x is the raw distance, y is the value in cm
# This values are used to calculate the approximate depth of the hand
x = (
np.array(
[
300,
245,
200,
170,
145,
130,
112,
103,
93,
87,
80,
75,
70,
67,
62,
59,
57,
]
)
/ 1.5
)
y = [20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100]
self.coff = np.polyfit(x, y, 2) # y = Ax^2 + Bx + C
def save_result(
self,
result: landmark_pb2.NormalizedLandmarkList,
unused_output_image,
timestamp_ms: int,
):
"""
Saves the result of the detection.
Args:
result (mediapipe.framework.formats.landmark_pb2.NormalizedLandmarkList): Result of the detection.
unused_output_image (mediapipe.framework.formats.image_frame.ImageFrame): Unused.
timestamp_ms (int): Timestamp of the detection.
Returns:
None
"""
self.DETECTION_RESULT = result
def initialize_detector(
self,
num_hands: int,
min_hand_detection_confidence: float,
min_hand_presence_confidence: float,
min_tracking_confidence: float,
):
"""
Initializes the HandLandmarker instance.
Args:
num_hands (int): Maximum number of hands to detect.
min_hand_detection_confidence (float): Minimum confidence value ([0.0, 1.0]) for hand detection to be considered successful.
min_hand_presence_confidence (float): Minimum confidence value ([0.0, 1.0]) for the presence of a hand for the hand landmarks to be considered tracked successfully.
min_tracking_confidence (float): Minimum confidence value ([0.0, 1.0]) for the hand landmarks to be considered tracked successfully.
Returns:
mediapipe.HandLandmarker: HandLandmarker instance.
"""
base_options = python.BaseOptions(model_asset_path=self.model)
options = vision.HandLandmarkerOptions(
base_options=base_options,
# running_mode=vision.RunningMode.LIVE_STREAM,
num_hands=num_hands,
min_hand_detection_confidence=min_hand_detection_confidence,
min_hand_presence_confidence=min_hand_presence_confidence,
min_tracking_confidence=min_tracking_confidence,
# result_callback=self.save_result,
)
return vision.HandLandmarker.create_from_options(options)
def draw_landmarks(
self,
image: np.ndarray,
text_color: tuple = (0, 0, 0),
font_size: int = 1,
font_thickness: int = 1,
) -> np.ndarray:
"""
Draws the landmarks and handedness on the image.
Args:
image (numpy.ndarray): Image on which to draw the landmarks.
text_color (tuple, optional): Color of the text. Defaults to (0, 0, 0).
font_size (int, optional): Size of the font. Defaults to 1.
font_thickness (int, optional): Thickness of the font. Defaults to 1.
Returns:
numpy.ndarray: Image with the landmarks drawn.
"""
if self.DETECTION_RESULT:
# Landmark visualization parameters.
# Draw landmarks and indicate handedness.
for idx in range(len(self.DETECTION_RESULT.hand_landmarks)):
hand_landmarks = self.DETECTION_RESULT.hand_landmarks[idx]
handedness = self.DETECTION_RESULT.handedness[idx]
# Draw the hand landmarks.
hand_landmarks_proto = landmark_pb2.NormalizedLandmarkList()
hand_landmarks_proto.landmark.extend(
[
landmark_pb2.NormalizedLandmark(
x=landmark.x, y=landmark.y, z=landmark.z
)
for landmark in hand_landmarks
]
)
self.mp_drawing.draw_landmarks(
image,
hand_landmarks_proto,
self.mp_hands.HAND_CONNECTIONS,
self.mp_drawing_styles.get_default_hand_landmarks_style(),
self.mp_drawing_styles.get_default_hand_connections_style(),
)
# Get the top left corner of the detected hand's bounding box.
height, width, _ = image.shape
x_coordinates = [landmark.x for landmark in hand_landmarks]
y_coordinates = [landmark.y for landmark in hand_landmarks]
text_x = int(min(x_coordinates) * width)
text_y = int(min(y_coordinates) * height) - self.MARGIN
# Draw handedness (left or right hand) on the image.
cv2.putText(
image,
f"{handedness[0].category_name}",
(text_x, text_y),
cv2.FONT_HERSHEY_DUPLEX,
self.FONT_SIZE,
self.HANDEDNESS_TEXT_COLOR,
self.FONT_THICKNESS,
cv2.LINE_AA,
)
return image
def detect(self, frame: np.ndarray, draw: bool = True) -> np.ndarray:
"""
Detects hands in the image.
Args:
frame (numpy.ndarray): Image in which to detect the hands.
draw (bool, optional): Whether to draw the landmarks on the image. Defaults to False.
Returns:
numpy.ndarray: Image with the landmarks drawn if draw is True, else the original image.
"""
rgb_image = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
mp_image = mp.Image(image_format=mp.ImageFormat.SRGB, data=rgb_image)
self.DETECTION_RESULT = self.detector.detect(mp_image)
return self.draw_landmarks(frame) if draw else frame
def raised_fingers(self):
"""
Counts the number of raised fingers.
Returns:
list: List of 1s and 0s, where 1 indicates a raised finger and 0 indicates a lowered finger.
"""
fingers = []
if self.DETECTION_RESULT:
for idx, hand_landmarks in enumerate(
self.DETECTION_RESULT.hand_world_landmarks
):
if self.DETECTION_RESULT.handedness[idx][0].category_name == "Right":
if (
hand_landmarks[self.tipIds[0]].x
> hand_landmarks[self.tipIds[0] - 1].x
):
fingers.append(1)
else:
fingers.append(0)
else:
if (
hand_landmarks[self.tipIds[0]].x
< hand_landmarks[self.tipIds[0] - 1].x
):
fingers.append(1)
else:
fingers.append(0)
for id in range(1, 5):
if (
hand_landmarks[self.tipIds[id]].y
< hand_landmarks[self.tipIds[id] - 2].y
):
fingers.append(1)
else:
fingers.append(0)
return fingers
def get_approximate_depth(
self, hand_idx: int = 0, width: int = 640, height: int = 480
) -> float:
"""
Calculates the depth of each finger landmark.
Returns:
numpy.ndarray: Mean of the depth of each finger landmark.
"""
if self.DETECTION_RESULT is not None:
x1, y1 = (
self.DETECTION_RESULT.hand_landmarks[hand_idx][5].x * width,
self.DETECTION_RESULT.hand_landmarks[hand_idx][5].y * height,
)
x2, y2 = (
self.DETECTION_RESULT.hand_landmarks[hand_idx][17].x * width,
self.DETECTION_RESULT.hand_landmarks[hand_idx][17].y * height,
)
distance = math.sqrt((y2 - y1) ** 2 + (x2 - x1) ** 2)
A, B, C = self.coff
return A * distance**2 + B * distance + C
else:
0
def get_hand_world_landmarks(self, hand_idx: int = 0):
"""
Returns the hand world landmarks.
Args:
hand_idx (int, optional): Index of the hand for which to return the landmarks. Defaults to 0.
0 = Right hand
1 = Left hand
Returns:
list: List of hand world landmarks.
"""
return (
self.DETECTION_RESULT.hand_world_landmarks[hand_idx]
if self.DETECTION_RESULT is not None
else []
)
def get_hand_landmarks(self, hand_idx: int = 0, idxs: list = None) -> list:
"""
Returns the hand landmarks.
Args:
hand_idx (int, optional): Index of the hand for which to return the landmarks. Defaults to 0.
0 = Right hand
1 = Left hand
idxs (list, optional): List of indices of the landmarks to return. Defaults to None.
Returns:
list: List of hand world landmarks.
"""
if self.DETECTION_RESULT is not None:
if idxs is None:
return self.DETECTION_RESULT.hand_landmarks[hand_idx]
else:
return [
self.DETECTION_RESULT.hand_landmarks[hand_idx][idx] for idx in idxs
]
else:
return []
def find_distance(self, l1, l2, img, draw=True):
"""
Finds the distance between two landmarks.
Args:
l1 (int): Index of the first landmark.
l2 (int): Index of the second landmark.
img (numpy.ndarray): Image on which to draw the landmarks.
draw (bool, optional): Whether to draw the landmarks on the image. Defaults to True.
Returns:
float: Distance between the two landmarks.
numpy.ndarray: Image with the landmarks drawn if draw is True, else the original image.
list: List of the coordinates of the two landmarks and the center of the line joining them.
"""
ladnmarks = self.get_hand_landmarks(idxs=[l1, l2])
x1, y1 = ladnmarks[0].x * img.shape[1], ladnmarks[0].y * img.shape[0]
x2, y2 = ladnmarks[1].x * img.shape[1], ladnmarks[1].y * img.shape[0]
cx, cy = (x1 + x2) // 2, (y1 + y2) // 2
length = math.hypot(x2 - x1, y2 - y1)
# Cast points to int
x1, y1, x2, y2, cx, cy = map(int, [x1, y1, x2, y2, cx, cy])
if draw:
cv2.circle(img, (x1, y1), 10, (255, 0, 255), cv2.FILLED)
cv2.circle(img, (x2, y2), 10, (255, 0, 255), cv2.FILLED)
cv2.line(img, (x1, y1), (x2, y2), (255, 0, 255), 3)
cv2.circle(img, (cx, cy), 10, (255, 0, 255), cv2.FILLED)
return length, img, [x1, y1, x2, y2, cx, cy]
@staticmethod
def download_model() -> str:
"""
Downloads the hand landmark model in float16 format from the mediapipe website.
https://storage.googleapis.com/mediapipe-models/hand_landmarker/hand_landmarker/float16/latest/hand_landmarker.task
Returns:
str: Path to the downloaded model.
"""
root = os.path.dirname(os.path.realpath(__file__))
# Unino to res folder
root = os.path.join(root, "..", "res")
filename = os.path.join(root, "hand_landmarker.task")
if os.path.exists(filename):
print(f"O arquivo {filename} já existe, pulando o download.")
else:
print(f"Baixando o arquivo {filename}...")
base = "https://storage.googleapis.com/mediapipe-models/hand_landmarker/hand_landmarker/float16/latest/hand_landmarker.task"
urllib.request.urlretrieve(base, filename)
return filename