opencv-gui / app.py
samuellimabraz's picture
feat: Implement custom theme and enhanced UI for OpenCV Explorer
c377bda unverified
raw
history blame
21.1 kB
import av
import cv2
import numpy as np
import streamlit as st
import os
import time
from streamlit_webrtc import webrtc_streamer, WebRtcMode, VideoHTMLAttributes
from src.opencv_utils import OpenCVUtils
from twilio.rest import Client
# Custom theme settings
st.set_page_config(
page_title="OpenCV Explorer",
page_icon="โšซ", # Changed icon for minimalism
layout="wide",
initial_sidebar_state="expanded",
)
# Create a custom theme
def create_custom_theme():
# Create a .streamlit directory if it doesn't exist
os.makedirs(".streamlit", exist_ok=True)
# Create a config.toml file with custom theme settings
with open(".streamlit/config.toml", "w") as f:
f.write(
"""
[theme]
primaryColor = "#444444" # Dark Grey
backgroundColor = "#FFFFFF" # White
secondaryBackgroundColor = "#F0F2F6" # Light Grey
textColor = "#000000" # Black
font = "sans serif"
"""
)
# Apply custom theme
create_custom_theme()
def get_ice_servers():
"""
Get ICE servers configuration.
For Streamlit Cloud deployment, a TURN server is required in addition to STUN.
This function will try to use Twilio's TURN server service if credentials are available,
otherwise it falls back to a free STUN server from Google.
"""
try:
# Try to get Twilio credentials from environment variables
account_sid = os.environ.get("TWILIO_ACCOUNT_SID")
auth_token = os.environ.get("TWILIO_AUTH_TOKEN")
if account_sid and auth_token:
client = Client(account_sid, auth_token)
token = client.tokens.create()
return token.ice_servers
else:
st.warning(
"Twilio credentials not found. Using free STUN server only, which may not work reliably." # Removed Streamlit Cloud mention for generality
)
except Exception as e:
st.error(f"Error setting up Twilio TURN servers: {e}")
# Fallback to Google's free STUN server
return [{"urls": ["stun:stun.l.google.com:19302"]}]
@st.cache_resource
def get_app():
return OpenCVUtils()
app = get_app()
# --- HIDE STREAMLIT STYLE ---
hide_st_style = """
<style>
#MainMenu {visibility: hidden;}
footer {visibility: hidden;}
header {visibility: hidden;}
/* Body background */
.stApp {
background-color: #FFFFFF; /* Set solid white background */
}
/* Tab styling */
.stTabs [data-baseweb="tab-list"] {
gap: 8px; /* Slightly reduced gap */
border-bottom: 1px solid #CCCCCC; /* Add a subtle border */
}
.stTabs [data-baseweb="tab"] {
background-color: transparent; /* Make tabs transparent */
border-radius: 0; /* Remove border radius */
padding: 10px 15px;
color: #555555; /* Grey text */
border-bottom: 2px solid transparent; /* Prepare for selected indicator */
transition: all 0.3s ease;
}
.stTabs [data-baseweb="tab"]:hover {
background-color: #F0F2F6; /* Light grey hover */
color: #000000; /* Black text on hover */
}
.stTabs [aria-selected="true"] {
background-color: transparent !important;
color: #000000 !important; /* Black text for selected */
border-bottom: 2px solid #444444 !important; /* Dark grey underline for selected */
font-weight: 600; /* Make selected tab bold */
}
/* Sidebar styling */
.css-1d391kg { /* Target sidebar specifically */
background-color: #F0F2F6 !important; /* Light grey sidebar */
}
/* Ensure sidebar text is readable */
.css-1d391kg .stMarkdown, .css-1d391kg .stCheckbox, .css-1d391kg .stExpander, .css-1d391kg .stText, .css-1d391kg .stButton > button {
color: #000000 !important;
}
/* Button styling */
.stButton>button {
background-color: #FFFFFF !important;
color: #000000 !important;
border: 1px solid #CCCCCC !important;
transition: all 0.3s ease !important;
box-shadow: none !important; /* Remove default shadow */
}
.stButton>button:hover {
background-color: #F0F2F6 !important; /* Light grey on hover */
border-color: #AAAAAA !important;
transform: none !important; /* Remove hover transform */
box-shadow: none !important;
}
.stButton>button:active {
background-color: #E0E0E0 !important; /* Slightly darker grey on click */
}
/* Expander header styling */
.stExpander > div:first-child {
background-color: #F0F2F6; /* Light grey background for expander header */
border-radius: 4px;
}
.stExpander header { /* Target expander header specifically */
color: #000000 !important; /* Black text for expander header */
font-weight: 600;
}
/* General adjustments for minimalist feel */
h1, h2, h3, h4, h5, h6 {
color: #000000; /* Ensure headers are black */
}
.stMarkdown p {
color: #333333; /* Slightly lighter black for paragraph text */
}
</style>
"""
st.markdown(hide_st_style, unsafe_allow_html=True)
# ---------------------------
# Top header with logo and title
col1, col2 = st.columns([1, 5])
with col1:
st.image(
"https://opencv.org/wp-content/uploads/2020/07/OpenCV_logo_black-2.png",
width=100,
)
with col2:
st.title("OpenCV Explorer")
st.markdown(
"""
<p style='font-size: 18px; margin-top: -10px;'>
Explore computer vision filters and transformations in real-time using your webcam.
</p>
""",
unsafe_allow_html=True,
)
# Create main layout
main_tabs = st.tabs(["๐Ÿ“น Camera Feed", "โ„น๏ธ About", "๐Ÿ“‹ Documentation"])
with main_tabs[0]: # Camera Feed Tab
# Create columns for camera and controls
video_col, control_col = st.columns([3, 1])
with control_col:
st.markdown("## ๐ŸŽ›๏ธ Controls")
# Organize filters into categories
filter_categories = {
"Basic Transformations": ["Resize", "Rotation", "Blur", "Sharpen"],
"Edge & Contour Detection": ["Canny", "Contour", "Hough Lines"],
"Color Operations": [
"Color Filter",
"Histogram Equalization",
"Color Quantization",
],
"Artistic Effects": ["Pencil Sketch", "Morphology", "Adaptive Threshold"],
"Advanced Features": ["Optical Flow", "Hand Tracker", "Face Tracker"],
}
# Use a dictionary to store the expanded state of each category
if "expanded" not in st.session_state:
st.session_state.expanded = {cat: False for cat in filter_categories}
st.session_state.expanded["Basic Transformations"] = (
True # Expand the first one by default
)
# Create filter selection UI with categories
selected_functions = []
for category, filters in filter_categories.items():
with st.expander(
f"**{category}**", expanded=st.session_state.expanded[category]
):
# Show checkboxes for each filter in this category
selected_in_category = []
for filter_name in filters:
if st.checkbox(filter_name, key=f"check_{filter_name}"):
selected_in_category.append(filter_name)
# If any filters selected in this category, add a reorder section
if selected_in_category:
st.markdown("**Order within category:**")
for i, filter_name in enumerate(selected_in_category):
col1, col2 = st.columns([4, 1])
with col1:
st.text(f"{i+1}. {filter_name}")
with col2:
if i > 0 and st.button("โ†‘", key=f"up_{filter_name}"):
# Move filter up in the list
selected_in_category[i], selected_in_category[i - 1] = (
selected_in_category[i - 1],
selected_in_category[i],
)
st.rerun()
# Add selected filters to the main list
selected_functions.extend(selected_in_category)
# Show the currently applied filters
if selected_functions:
st.markdown("### ๐Ÿ“Œ Applied Filters")
for i, fn in enumerate(selected_functions):
st.markdown(f"**{i+1}.** {fn}")
else:
st.info("Select filters to apply to the camera feed")
# Filter parameters - using expanders for cleaner UI
if any(f in selected_functions for f in ["Resize"]):
with st.expander("๐Ÿ“ Resize Parameters", expanded=True):
w = st.slider("Width", 320, 1280, 640)
h = st.slider("Height", 240, 720, 480)
else:
# Default values if not displayed
w, h = 640, 480
if "Rotation" in selected_functions:
with st.expander("๐Ÿ”„ Rotation Parameters", expanded=True):
ang = st.slider("Angle", 0, 360, 0)
else:
ang = 0
if "Blur" in selected_functions:
with st.expander("๐ŸŒซ๏ธ Blur Parameters", expanded=True):
bk = st.slider("Kernel Size (odd)", 1, 15, 5, step=2)
else:
bk = 5
if "Color Filter" in selected_functions:
with st.expander("๐ŸŽจ Color Filter Parameters", expanded=True):
col1, col2 = st.columns(2)
with col1:
st.markdown("**Lower Bounds**")
lh = st.slider("Hue (L)", 0, 180, 0)
ls = st.slider("Sat (L)", 0, 255, 0)
lv = st.slider("Val (L)", 0, 255, 0)
with col2:
st.markdown("**Upper Bounds**")
uh = st.slider("Hue (U)", 0, 180, 180)
us = st.slider("Sat (U)", 0, 255, 255)
uv = st.slider("Val (U)", 0, 255, 255)
# Color preview - Make it dynamic again
# Use the lower bound HSV values to generate an HSL color for CSS
preview_color_hsl = f"hsl({lh * 2}, {ls / 2.55}%, {lv / 2.55}%)"
st.markdown(
f"""
<div style="background-color: {preview_color_hsl}; width: 100%; height: 30px;
border: 1px solid #CCCCCC; border-radius: 5px; margin-top: 10px;">
<p style='text-align: center; color: #333; line-height: 30px; font-size: 12px; font-weight: bold;'>
Preview (Lower Bound)
</p>
</div>
""",
unsafe_allow_html=True,
)
else:
lh, ls, lv, uh, us, uv = 0, 0, 0, 180, 255, 255
if "Canny" in selected_functions:
with st.expander("๐Ÿ“Š Canny Edge Parameters", expanded=True):
lc = st.slider("Lower Threshold", 0, 255, 100)
uc = st.slider("Upper Threshold", 0, 255, 200)
else:
lc, uc = 100, 200
if "Morphology" in selected_functions:
with st.expander("๐Ÿงฉ Morphology Parameters", expanded=True):
morph_op = st.selectbox(
"Operation", ["erode", "dilate", "open", "close"]
)
morph_ks = st.slider("Kernel Size", 1, 31, 5, step=2)
else:
morph_op, morph_ks = "erode", 5
with video_col:
st.markdown("## ๐Ÿ“น Live Camera Feed")
# WebRTC settings for real-time video
prev_gray = None
def video_frame_callback(frame: av.VideoFrame) -> av.VideoFrame:
global prev_gray
img = frame.to_ndarray(format="bgr24")
curr_gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
for fn in selected_functions:
if fn == "Color Filter":
img = app.apply_color_filter(img, (lh, ls, lv), (uh, us, uv))
elif fn == "Canny":
img = app.apply_edge_detection(img, lc, uc)
elif fn == "Blur":
img = app.blur_image(img, bk)
elif fn == "Rotation":
img = app.rotate_image(img, ang)
elif fn == "Resize":
img = app.resize_image(img, w, h)
elif fn == "Contour":
img = app.apply_contour_detection(img)
elif fn == "Histogram Equalization":
img = app.equalize_histogram(img)
elif fn == "Adaptive Threshold":
img = app.adaptive_threshold(img)
elif fn == "Morphology":
img = app.morphology(img, morph_op, morph_ks)
elif fn == "Sharpen":
img = app.sharpen(img)
elif fn == "Hough Lines":
img = app.hough_lines(img)
elif fn == "Optical Flow" and prev_gray is not None:
img = app.optical_flow(prev_gray, curr_gray, img)
elif fn == "Pencil Sketch":
img = app.pencil_sketch(img)
elif fn == "Color Quantization":
img = app.color_quantization(img)
elif fn == "Hand Tracker":
img = app.detect_hands(img)
elif fn == "Face Tracker":
img = app.detect_faces(img)
prev_gray = curr_gray
return av.VideoFrame.from_ndarray(img, format="bgr24")
webrtc_streamer(
key="opencv-explorer",
mode=WebRtcMode.SENDRECV,
rtc_configuration={"iceServers": get_ice_servers()},
video_frame_callback=video_frame_callback,
media_stream_constraints={"video": True, "audio": False},
async_processing=True,
video_html_attrs=VideoHTMLAttributes(
autoPlay=True,
controls=False,
style={
"width": f"{w}px",
"height": f"{h}px",
"border-radius": "8px",
"margin": "0 auto",
"display": "block",
"border": "2px solid #444444", # Changed border to dark grey
},
),
)
# Performance metrics
with st.expander("๐Ÿ“Š Performance Metrics", expanded=False):
col1, col2, col3 = st.columns(3)
col1.metric("Resolution", f"{w}x{h} px")
col2.metric("Filters Applied", len(selected_functions))
col3.metric("Frame Processing", f"{time.time():.2f} ms", delta=None)
with main_tabs[1]: # About Tab
st.markdown(
"""
## About OpenCV Explorer
OpenCV Explorer is an interactive web application that allows you to experiment with various computer vision techniques in real-time using your webcam. This application is built with:
- **OpenCV**: Open Source Computer Vision Library
- **Streamlit**: An open-source app framework for Machine Learning and Data Science
- **WebRTC**: Web Real-Time Communication for live video streaming
### Features
- Apply multiple filters and transformations to your webcam feed
- Adjust parameters in real-time
- Experiment with advanced computer vision techniques
- Learn about image processing concepts
### How to Use
1. Select one or more filters from the categories in the control panel
2. Adjust the parameters for each selected filter
3. See the results in real-time through your webcam
4. Reorder filters to create different effects
### Privacy Note
All processing is done in your browser. No video data is sent to any server except for the WebRTC connection.
"""
)
with main_tabs[2]: # Documentation Tab
st.markdown(
"""
## Documentation
### Available Filters
"""
)
# Create documentation for each filter category
for category, filters in filter_categories.items():
with st.expander(f"**{category}**", expanded=False):
for filter_name in filters:
st.markdown(f"#### {filter_name}")
# Add description for each filter
if filter_name == "Color Filter":
st.markdown(
"""
Isolates specific colors in the HSV (Hue, Saturation, Value) color space.
**Parameters:**
- **Hue**: Color type (0-180)
- **Saturation**: Color intensity (0-255)
- **Value**: Brightness (0-255)
**Usage**: Object detection based on color, creative effects, background removal.
"""
)
elif filter_name == "Canny":
st.markdown(
"""
Detects edges in the image using the Canny edge detection algorithm.
**Parameters:**
- **Lower Threshold**: Minimum gradient value to consider as an edge
- **Upper Threshold**: Maximum gradient value to consider as an edge
**Usage**: Edge detection, feature extraction, line detection.
"""
)
elif filter_name == "Blur":
st.markdown(
"""
Applies Gaussian blur to smooth the image.
**Parameters:**
- **Kernel Size**: Size of the blurring matrix (higher values create more blur)
**Usage**: Noise reduction, detail smoothing, pre-processing for other algorithms.
"""
)
elif filter_name == "Rotation":
st.markdown(
"""
Rotates the image by a specified angle.
**Parameters:**
- **Angle**: Rotation angle in degrees (0-360)
**Usage**: Image orientation correction, creative effects.
"""
)
elif filter_name == "Resize":
st.markdown(
"""
Changes the dimensions of the image.
**Parameters:**
- **Width**: Output width in pixels
- **Height**: Output height in pixels
**Usage**: Scaling for performance, UI fitting, preprocessing.
"""
)
elif filter_name == "Hand Tracker":
st.markdown(
"""
Detects and tracks hand positions and landmarks using MediaPipe.
**Parameters:** None (uses pre-trained models)
**Usage**: Gesture recognition, hand pose estimation, interactive applications.
"""
)
elif filter_name == "Face Tracker":
st.markdown(
"""
Detects and tracks facial landmarks using MediaPipe.
**Parameters:** None (uses pre-trained models)
**Usage**: Face detection, facial expression analysis, AR effects.
"""
)
else:
st.markdown(f"Documentation for {filter_name} filter.")
st.markdown(
"""
### Technical Details
For more information about the algorithms and techniques used in this application, refer to:
- [OpenCV Documentation](https://docs.opencv.org/4.x/d6/d00/tutorial_py_root.html)
- [MediaPipe Documentation](https://ai.google.dev/edge/mediapipe/solutions/guide?hl=pt-br)
- [Streamlit Documentation](https://docs.streamlit.io/)
"""
)