Spaces:
Running
Running
File size: 14,063 Bytes
ae1809b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 |
import math
import os
import urllib.request
import cv2
import numpy as np
import mediapipe as mp
from mediapipe.tasks import python
from mediapipe.tasks.python import vision
from mediapipe.framework.formats import landmark_pb2
class HandTracker:
def __init__(
self,
model: str = None,
num_hands: int = 2,
min_hand_detection_confidence: float = 0.5,
min_hand_presence_confidence: float = 0.5,
min_tracking_confidence: float = 0.5,
):
"""
Initialize a HandTracker instance.
Args:
model (str): The path to the model for hand tracking.
num_hands (int): Maximum number of hands to detect.
min_hand_detection_confidence (float): Minimum confidence value ([0.0, 1.0]) for successful hand detection.
min_hand_presence_confidence (float): Minimum confidence value ([0.0, 1.0]) for presence of a hand to be tracked.
min_tracking_confidence (float): Minimum confidence value ([0.0, 1.0]) for successful hand landmark tracking.
"""
self.model = model
if self.model is None:
self.model = self.download_model()
self.detector = self.initialize_detector(
num_hands,
min_hand_detection_confidence,
min_hand_presence_confidence,
min_tracking_confidence,
)
self.mp_hands = mp.solutions.hands
self.mp_drawing = mp.solutions.drawing_utils
self.mp_drawing_styles = mp.solutions.drawing_styles
self.DETECTION_RESULT = None
self.tipIds = [4, 8, 12, 16, 20]
self.MARGIN = 10 # pixels
self.FONT_SIZE = 1
self.FONT_THICKNESS = 1
self.HANDEDNESS_TEXT_COLOR = (88, 205, 54) # vibrant green
# x is the raw distance, y is the value in cm
# This values are used to calculate the approximate depth of the hand
x = (
np.array(
[
300,
245,
200,
170,
145,
130,
112,
103,
93,
87,
80,
75,
70,
67,
62,
59,
57,
]
)
/ 1.5
)
y = [20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100]
self.coff = np.polyfit(x, y, 2) # y = Ax^2 + Bx + C
def save_result(
self,
result: landmark_pb2.NormalizedLandmarkList,
unused_output_image,
timestamp_ms: int,
):
"""
Saves the result of the detection.
Args:
result (mediapipe.framework.formats.landmark_pb2.NormalizedLandmarkList): Result of the detection.
unused_output_image (mediapipe.framework.formats.image_frame.ImageFrame): Unused.
timestamp_ms (int): Timestamp of the detection.
Returns:
None
"""
self.DETECTION_RESULT = result
def initialize_detector(
self,
num_hands: int,
min_hand_detection_confidence: float,
min_hand_presence_confidence: float,
min_tracking_confidence: float,
):
"""
Initializes the HandLandmarker instance.
Args:
num_hands (int): Maximum number of hands to detect.
min_hand_detection_confidence (float): Minimum confidence value ([0.0, 1.0]) for hand detection to be considered successful.
min_hand_presence_confidence (float): Minimum confidence value ([0.0, 1.0]) for the presence of a hand for the hand landmarks to be considered tracked successfully.
min_tracking_confidence (float): Minimum confidence value ([0.0, 1.0]) for the hand landmarks to be considered tracked successfully.
Returns:
mediapipe.HandLandmarker: HandLandmarker instance.
"""
base_options = python.BaseOptions(model_asset_path=self.model)
options = vision.HandLandmarkerOptions(
base_options=base_options,
# running_mode=vision.RunningMode.LIVE_STREAM,
num_hands=num_hands,
min_hand_detection_confidence=min_hand_detection_confidence,
min_hand_presence_confidence=min_hand_presence_confidence,
min_tracking_confidence=min_tracking_confidence,
# result_callback=self.save_result,
)
return vision.HandLandmarker.create_from_options(options)
def draw_landmarks(
self,
image: np.ndarray,
text_color: tuple = (0, 0, 0),
font_size: int = 1,
font_thickness: int = 1,
) -> np.ndarray:
"""
Draws the landmarks and handedness on the image.
Args:
image (numpy.ndarray): Image on which to draw the landmarks.
text_color (tuple, optional): Color of the text. Defaults to (0, 0, 0).
font_size (int, optional): Size of the font. Defaults to 1.
font_thickness (int, optional): Thickness of the font. Defaults to 1.
Returns:
numpy.ndarray: Image with the landmarks drawn.
"""
if self.DETECTION_RESULT:
# Landmark visualization parameters.
# Draw landmarks and indicate handedness.
for idx in range(len(self.DETECTION_RESULT.hand_landmarks)):
hand_landmarks = self.DETECTION_RESULT.hand_landmarks[idx]
handedness = self.DETECTION_RESULT.handedness[idx]
# Draw the hand landmarks.
hand_landmarks_proto = landmark_pb2.NormalizedLandmarkList()
hand_landmarks_proto.landmark.extend(
[
landmark_pb2.NormalizedLandmark(
x=landmark.x, y=landmark.y, z=landmark.z
)
for landmark in hand_landmarks
]
)
self.mp_drawing.draw_landmarks(
image,
hand_landmarks_proto,
self.mp_hands.HAND_CONNECTIONS,
self.mp_drawing_styles.get_default_hand_landmarks_style(),
self.mp_drawing_styles.get_default_hand_connections_style(),
)
# Get the top left corner of the detected hand's bounding box.
height, width, _ = image.shape
x_coordinates = [landmark.x for landmark in hand_landmarks]
y_coordinates = [landmark.y for landmark in hand_landmarks]
text_x = int(min(x_coordinates) * width)
text_y = int(min(y_coordinates) * height) - self.MARGIN
# Draw handedness (left or right hand) on the image.
cv2.putText(
image,
f"{handedness[0].category_name}",
(text_x, text_y),
cv2.FONT_HERSHEY_DUPLEX,
self.FONT_SIZE,
self.HANDEDNESS_TEXT_COLOR,
self.FONT_THICKNESS,
cv2.LINE_AA,
)
return image
def detect(self, frame: np.ndarray, draw: bool = True) -> np.ndarray:
"""
Detects hands in the image.
Args:
frame (numpy.ndarray): Image in which to detect the hands.
draw (bool, optional): Whether to draw the landmarks on the image. Defaults to False.
Returns:
numpy.ndarray: Image with the landmarks drawn if draw is True, else the original image.
"""
rgb_image = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
mp_image = mp.Image(image_format=mp.ImageFormat.SRGB, data=rgb_image)
self.DETECTION_RESULT = self.detector.detect(mp_image)
return self.draw_landmarks(frame) if draw else frame
def raised_fingers(self):
"""
Counts the number of raised fingers.
Returns:
list: List of 1s and 0s, where 1 indicates a raised finger and 0 indicates a lowered finger.
"""
fingers = []
if self.DETECTION_RESULT:
for idx, hand_landmarks in enumerate(
self.DETECTION_RESULT.hand_world_landmarks
):
if self.DETECTION_RESULT.handedness[idx][0].category_name == "Right":
if (
hand_landmarks[self.tipIds[0]].x
> hand_landmarks[self.tipIds[0] - 1].x
):
fingers.append(1)
else:
fingers.append(0)
else:
if (
hand_landmarks[self.tipIds[0]].x
< hand_landmarks[self.tipIds[0] - 1].x
):
fingers.append(1)
else:
fingers.append(0)
for id in range(1, 5):
if (
hand_landmarks[self.tipIds[id]].y
< hand_landmarks[self.tipIds[id] - 2].y
):
fingers.append(1)
else:
fingers.append(0)
return fingers
def get_approximate_depth(
self, hand_idx: int = 0, width: int = 640, height: int = 480
) -> float:
"""
Calculates the depth of each finger landmark.
Returns:
numpy.ndarray: Mean of the depth of each finger landmark.
"""
if self.DETECTION_RESULT is not None:
x1, y1 = (
self.DETECTION_RESULT.hand_landmarks[hand_idx][5].x * width,
self.DETECTION_RESULT.hand_landmarks[hand_idx][5].y * height,
)
x2, y2 = (
self.DETECTION_RESULT.hand_landmarks[hand_idx][17].x * width,
self.DETECTION_RESULT.hand_landmarks[hand_idx][17].y * height,
)
distance = math.sqrt((y2 - y1) ** 2 + (x2 - x1) ** 2)
A, B, C = self.coff
return A * distance**2 + B * distance + C
else:
0
def get_hand_world_landmarks(self, hand_idx: int = 0):
"""
Returns the hand world landmarks.
Args:
hand_idx (int, optional): Index of the hand for which to return the landmarks. Defaults to 0.
0 = Right hand
1 = Left hand
Returns:
list: List of hand world landmarks.
"""
return (
self.DETECTION_RESULT.hand_world_landmarks[hand_idx]
if self.DETECTION_RESULT is not None
else []
)
def get_hand_landmarks(self, hand_idx: int = 0, idxs: list = None) -> list:
"""
Returns the hand landmarks.
Args:
hand_idx (int, optional): Index of the hand for which to return the landmarks. Defaults to 0.
0 = Right hand
1 = Left hand
idxs (list, optional): List of indices of the landmarks to return. Defaults to None.
Returns:
list: List of hand world landmarks.
"""
if self.DETECTION_RESULT is not None:
if idxs is None:
return self.DETECTION_RESULT.hand_landmarks[hand_idx]
else:
return [
self.DETECTION_RESULT.hand_landmarks[hand_idx][idx] for idx in idxs
]
else:
return []
def find_distance(self, l1, l2, img, draw=True):
"""
Finds the distance between two landmarks.
Args:
l1 (int): Index of the first landmark.
l2 (int): Index of the second landmark.
img (numpy.ndarray): Image on which to draw the landmarks.
draw (bool, optional): Whether to draw the landmarks on the image. Defaults to True.
Returns:
float: Distance between the two landmarks.
numpy.ndarray: Image with the landmarks drawn if draw is True, else the original image.
list: List of the coordinates of the two landmarks and the center of the line joining them.
"""
ladnmarks = self.get_hand_landmarks(idxs=[l1, l2])
x1, y1 = ladnmarks[0].x * img.shape[1], ladnmarks[0].y * img.shape[0]
x2, y2 = ladnmarks[1].x * img.shape[1], ladnmarks[1].y * img.shape[0]
cx, cy = (x1 + x2) // 2, (y1 + y2) // 2
length = math.hypot(x2 - x1, y2 - y1)
# Cast points to int
x1, y1, x2, y2, cx, cy = map(int, [x1, y1, x2, y2, cx, cy])
if draw:
cv2.circle(img, (x1, y1), 10, (255, 0, 255), cv2.FILLED)
cv2.circle(img, (x2, y2), 10, (255, 0, 255), cv2.FILLED)
cv2.line(img, (x1, y1), (x2, y2), (255, 0, 255), 3)
cv2.circle(img, (cx, cy), 10, (255, 0, 255), cv2.FILLED)
return length, img, [x1, y1, x2, y2, cx, cy]
@staticmethod
def download_model() -> str:
"""
Downloads the hand landmark model in float16 format from the mediapipe website.
https://storage.googleapis.com/mediapipe-models/hand_landmarker/hand_landmarker/float16/latest/hand_landmarker.task
Returns:
str: Path to the downloaded model.
"""
root = os.path.dirname(os.path.realpath(__file__))
# Unino to res folder
root = os.path.join(root, "..", "res")
filename = os.path.join(root, "hand_landmarker.task")
if os.path.exists(filename):
print(f"O arquivo {filename} já existe, pulando o download.")
else:
print(f"Baixando o arquivo {filename}...")
base = "https://storage.googleapis.com/mediapipe-models/hand_landmarker/hand_landmarker/float16/latest/hand_landmarker.task"
urllib.request.urlretrieve(base, filename)
return filename
|