from fastapi import FastAPI, HTTPException from fastapi.responses import JSONResponse from fastapi.middleware.cors import CORSMiddleware from pydantic import BaseModel from backend.utils import generate_completions from backend import config from backend.database import get_db_connection import psycopg2 from psycopg2.extras import RealDictCursor from typing import Union, List, Literal, Optional import logging import json logging.basicConfig(level=logging.INFO) app = FastAPI() # Add CORS middleware app.add_middleware( CORSMiddleware, allow_origins=["*"], # Allows all origins allow_credentials=True, allow_methods=["*"], # Allows all methods allow_headers=["*"], # Allows all headers ) # Dependency to get database connection async def get_db(): conn = await get_db_connection() try: yield conn finally: conn.close() # class GenerationRequest(BaseModel): # user_id: int # query: str class Message(BaseModel): role: Literal["user", "assistant"] content: str class GenerationRequest(BaseModel): user_id: int query: Union[str, List[Message]] class MetadataRequest(BaseModel): query: str # Global metadata variables native_language: Optional[str] = None target_language: Optional[str] = None proficiency: Optional[str] = None @app.get("/") async def root(): return {"message": "Welcome to the AI Learning Assistant API!"} @app.post("/extract/metadata") async def extract_metadata(data: MetadataRequest): try: response_str = await generate_completions.get_completions( data.query, config.language_metadata_extraction_prompt ) metadata_dict = json.loads(response_str) # Update globals for other endpoints globals()['native_language'] = metadata_dict.get('native_language', 'unknown') globals()['target_language'] = metadata_dict.get('target_language', 'unknown') globals()['proficiency'] = metadata_dict.get('proficiency_level', 'unknown') return JSONResponse( content={ "data": metadata_dict, "type": "language_metadata", "status": "success" }, status_code=200 ) except Exception as e: raise HTTPException(status_code=500, detail=str(e)) @app.post("/generate/flashcards") async def generate_flashcards(data: GenerationRequest): try: # Use previously extracted metadata instructions = ( config.flashcard_mode_instructions .replace("{native_language}", native_language or "unknown") .replace("{target_language}", target_language or "unknown") .replace("{proficiency}", proficiency or "unknown") ) response = await generate_completions.get_completions( data.query, instructions ) return JSONResponse( content={ "data": response, "type": "flashcards", "status": "success" }, status_code=200 ) except Exception as e: raise HTTPException(status_code=500, detail=str(e)) @app.post("/generate/exercises") async def generate_exercises(data: GenerationRequest): try: # Use previously extracted metadata instructions = ( config.exercise_mode_instructions .replace("{native_language}", native_language or "unknown") .replace("{target_language}", target_language or "unknown") .replace("{proficiency}", proficiency or "unknown") ) response = await generate_completions.get_completions( data.query, instructions ) return JSONResponse( content={ "data": response, "type": "exercises", "status": "success" }, status_code=200 ) except Exception as e: raise HTTPException(status_code=500, detail=str(e)) @app.post("/generate/simulation") async def generate_simulation(data: GenerationRequest): try: # Use previously extracted metadata instructions = ( config.simulation_mode_instructions .replace("{native_language}", native_language or "unknown") .replace("{target_language}", target_language or "unknown") .replace("{proficiency}", proficiency or "unknown") ) response = await generate_completions.get_completions( data.query, instructions ) return JSONResponse( content={ "data": response, "type": "simulation", "status": "success" }, status_code=200 ) except Exception as e: raise HTTPException(status_code=500, detail=str(e))