Spaces:
Sleeping
Sleeping
File size: 74,463 Bytes
00b00eb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 |
import streamlit as st
import pandas as pd
import json
from scenario import Channel, Scenario
import numpy as np
from plotly.subplots import make_subplots
import plotly.graph_objects as go
from scenario import class_to_dict
from collections import OrderedDict
import io
import plotly
from pathlib import Path
import pickle
import yaml
from yaml import SafeLoader
from streamlit.components.v1 import html
import smtplib
from scipy.optimize import curve_fit
from sklearn.metrics import r2_score
from scenario import class_from_dict, class_convert_to_dict
import os
import base64
import sqlite3
import datetime
from scenario import numerize
import psycopg2
#
import re
import bcrypt
import os
import json
import glob
import pickle
import streamlit as st
import streamlit as st
import pandas as pd
import json
from scenario import Channel, Scenario
import numpy as np
from plotly.subplots import make_subplots
import plotly.graph_objects as go
from scenario import class_to_dict
from collections import OrderedDict
import io
import plotly
from pathlib import Path
import pickle
import yaml
from yaml import SafeLoader
from streamlit.components.v1 import html
import smtplib
from scipy.optimize import curve_fit
from sklearn.metrics import r2_score
from scenario import class_from_dict, class_convert_to_dict
import os
import base64
import sqlite3
import datetime
from scenario import numerize
import sqlite3
# # schema = db_cred["schema"]
color_palette = [
"#F3F3F0",
"#5E7D7E",
"#2FA1FF",
"#00EDED",
"#00EAE4",
"#304550",
"#EDEBEB",
"#7FBEFD",
"#003059",
"#A2F3F3",
"#E1D6E2",
"#B6B6B6",
]
CURRENCY_INDICATOR = "$"
db_cred = None
# database_file = r"DB/User.db"
# conn = sqlite3.connect(database_file, check_same_thread=False) # connection with sql db
# c = conn.cursor()
# def query_excecuter_postgres(
# query,
# db_cred,
# params=None,
# insert=True,
# insert_retrieve=False,
# ):
# """
# Executes a SQL query on a PostgreSQL database, handling both insert and select operations.
# Parameters:
# query (str): The SQL query to be executed.
# params (tuple, optional): Parameters to pass into the SQL query for parameterized execution.
# insert (bool, default=True): Flag to determine if the query is an insert operation (default) or a select operation.
# insert_retrieve (bool, default=False): Flag to determine if the query should insert and then return the inserted ID.
# """
# # Database connection parameters
# dbname = db_cred["dbname"]
# user = db_cred["user"]
# password = db_cred["password"]
# host = db_cred["host"]
# port = db_cred["port"]
# try:
# # Establish connection to the PostgreSQL database
# conn = psycopg2.connect(
# dbname=dbname, user=user, password=password, host=host, port=port
# )
# except psycopg2.Error as e:
# st.warning(f"Unable to connect to the database: {e}")
# st.stop()
# # Create a cursor object to interact with the database
# c = conn.cursor()
# try:
# # Execute the query with or without parameters
# if params:
# c.execute(query, params)
# else:
# c.execute(query)
# if not insert:
# # If not an insert operation, fetch and return the results
# results = c.fetchall()
# return results
# elif insert_retrieve:
# # If insert and retrieve operation, fetch and return the results
# conn.commit()
# return c.fetchall()
# else:
# conn.commit()
# except Exception as e:
# st.write(f"Error executing query: {e}")
# finally:
# conn.close()
db_path = os.path.join("imp_db.db")
def query_excecuter_postgres(
query, db_path=None, params=None, insert=True, insert_retrieve=False, db_cred=None
):
"""
Executes a SQL query on a SQLite database, handling both insert and select operations.
Parameters:
query (str): The SQL query to be executed.
db_path (str): Path to the SQLite database file.
params (tuple, optional): Parameters to pass into the SQL query for parameterized execution.
insert (bool, default=True): Flag to determine if the query is an insert operation (default) or a select operation.
insert_retrieve (bool, default=False): Flag to determine if the query should insert and then return the inserted ID.
"""
try:
# Construct a cross-platform path to the database
db_dir = os.path.join("db")
os.makedirs(db_dir, exist_ok=True) # Make sure the directory exists
db_path = os.path.join(db_dir, "imp_db.db")
# Establish connection to the SQLite database
conn = sqlite3.connect(db_path)
except sqlite3.Error as e:
st.warning(f"Unable to connect to the SQLite database: {e}")
st.stop()
# Create a cursor object to interact with the database
c = conn.cursor()
# Prepare the query with proper placeholders
if params:
# Handle the `IN (?)` clause dynamically
query = query.replace("IN (?)", f"IN ({','.join(['?' for _ in params])})")
c.execute(query, params)
else:
c.execute(query)
try:
if not insert:
# If not an insert operation, fetch and return the results
results = c.fetchall()
return results
elif insert_retrieve:
# If insert and retrieve operation, commit and return the last inserted row ID
conn.commit()
return c.lastrowid
else:
# For standard insert operations, commit the transaction
conn.commit()
except Exception as e:
st.write(f"Error executing query: {e}")
finally:
conn.close()
def update_summary_df():
"""
Updates the 'project_summary_df' in the session state with the latest project
summary information based on the most recent updates.
This function executes a SQL query to retrieve project metadata from a database
and stores the result in the session state.
Uses:
- query_excecuter_postgres(query, params=params, insert=False): A function that
executes the provided SQL query on a PostgreSQL database.
Modifies:
- st.session_state['project_summary_df']: Updates the dataframe with columns:
'Project Number', 'Project Name', 'Last Modified Page', 'Last Modified Time'.
"""
query = f"""
WITH LatestUpdates AS (
SELECT
prj_id,
page_nam,
updt_dt_tm,
ROW_NUMBER() OVER (PARTITION BY prj_id ORDER BY updt_dt_tm DESC) AS rn
FROM
mmo_project_meta_data
)
SELECT
p.prj_id,
p.prj_nam AS prj_nam,
lu.page_nam,
lu.updt_dt_tm
FROM
LatestUpdates lu
RIGHT JOIN
mmo_projects p ON lu.prj_id = p.prj_id
WHERE
p.prj_ownr_id = ? AND lu.rn = 1
"""
params = (st.session_state["emp_id"],) # Parameters for the SQL query
# Execute the query and retrieve project summary data
project_summary = query_excecuter_postgres(
query, db_cred, params=params, insert=False
)
# Update the session state with the project summary dataframe
st.session_state["project_summary_df"] = pd.DataFrame(
project_summary,
columns=[
"Project Number",
"Project Name",
"Last Modified Page",
"Last Modified Time",
],
)
st.session_state["project_summary_df"] = st.session_state[
"project_summary_df"
].sort_values(by=["Last Modified Time"], ascending=False)
return st.session_state["project_summary_df"]
from constants import default_dct
def ensure_project_dct_structure(session_state, default_dct):
for key, value in default_dct.items():
if key not in session_state:
session_state[key] = value
elif isinstance(value, dict):
ensure_project_dct_structure(session_state[key], value)
def project_selection():
emp_id = st.text_input("employee id", key="emp1111").lower()
password = st.text_input("Password", max_chars=15, type="password")
if st.button("Login"):
if "unique_ids" not in st.session_state:
unique_users_query = f"""
SELECT DISTINCT emp_id, emp_nam, emp_typ from mmo_users;
"""
unique_users_result = query_excecuter_postgres(
unique_users_query, db_cred, insert=False
) # retrieves all the users who has access to MMO TOOL
st.session_state["unique_ids"] = {
emp_id: (emp_nam, emp_type)
for emp_id, emp_nam, emp_type in unique_users_result
}
if emp_id not in st.session_state["unique_ids"].keys() or len(password) == 0:
st.warning("invalid id or password!")
st.stop()
if not is_pswrd_flag_set(emp_id):
st.warning("Reset password in home page to continue")
st.stop()
elif not verify_password(emp_id, password):
st.warning("Invalid user name or password")
st.stop()
else:
st.session_state["emp_id"] = emp_id
st.session_state["username"] = st.session_state["unique_ids"][
st.session_state["emp_id"]
][0]
with st.spinner("Loading Saved Projects"):
st.session_state["project_summary_df"] = update_summary_df()
# st.write(st.session_state["project_name"][0])
if len(st.session_state["project_summary_df"]) == 0:
st.warning("No projects found please create a project in Home page")
st.stop()
else:
try:
st.session_state["project_name"] = (
st.session_state["project_summary_df"]
.loc[
st.session_state["project_summary_df"]["Project Number"]
== st.session_state["project_summary_df"].iloc[0, 0],
"Project Name",
]
.values[0]
) # fetching project name from project number stored in summary df
poroject_dct_query = f"""
SELECT pkl_obj FROM mmo_project_meta_data WHERE prj_id = ? AND file_nam=?;
"""
# Execute the query and retrieve the result
project_number = int(st.session_state["project_summary_df"].iloc[0, 0])
st.session_state["project_number"] = project_number
project_dct_retrieved = query_excecuter_postgres(
poroject_dct_query,
db_cred,
params=(project_number, "project_dct"),
insert=False,
)
# retrieves project dict (meta data) stored in db
st.session_state["project_dct"] = pickle.loads(
project_dct_retrieved[0][0]
) # converting bytes data to original objet using pickle
ensure_project_dct_structure(
st.session_state["project_dct"], default_dct
)
st.success("Project Loded")
st.rerun()
except Exception as e:
st.write(
"Failed to load project meta data from db please create new project!"
)
st.stop()
def update_db(prj_id, page_nam, file_nam, pkl_obj, resp_mtrc="", schema=""):
# Check if an entry already exists
check_query = f"""
SELECT 1 FROM mmo_project_meta_data
WHERE prj_id = ? AND file_nam =?;
"""
check_params = (prj_id, file_nam)
result = query_excecuter_postgres(
check_query, db_cred, params=check_params, insert=False
)
# If entry exists, perform an update
if result is not None and result:
update_query = f"""
UPDATE mmo_project_meta_data
SET file_nam = ?, pkl_obj = ?, page_nam=? ,updt_dt_tm = datetime('now')
WHERE prj_id = ? AND file_nam = ?;
"""
update_params = (file_nam, pkl_obj, page_nam, prj_id, file_nam)
query_excecuter_postgres(
update_query, db_cred, params=update_params, insert=True
)
# If entry does not exist, perform an insert
else:
insert_query = f"""
INSERT INTO mmo_project_meta_data
(prj_id, page_nam, file_nam, pkl_obj,crte_by_uid, crte_dt_tm, updt_dt_tm)
VALUES (?, ?, ?, ?, ?, datetime('now'), datetime('now'));
"""
insert_params = (
prj_id,
page_nam,
file_nam,
pkl_obj,
st.session_state["emp_id"],
)
query_excecuter_postgres(
insert_query, db_cred, params=insert_params, insert=True
)
# st.success(f"Inserted project meta data for project {prj_id}, page {page_nam}")
def retrieve_pkl_object(prj_id, page_nam, file_nam, schema=""):
query = f"""
SELECT pkl_obj FROM mmo_project_meta_data
WHERE prj_id = ? AND page_nam = ? AND file_nam = ?;
"""
params = (prj_id, page_nam, file_nam)
result = query_excecuter_postgres(
query, db_cred=db_cred, params=params, insert=False
)
if result and result[0] and result[0][0]:
pkl_obj = result[0][0]
# Deserialize the pickle object
return pickle.loads(pkl_obj)
else:
return None
def validate_text(input_text):
# Check the length of the text
if len(input_text) < 2:
return False, "Input should be at least 2 characters long."
if len(input_text) > 30:
return False, "Input should not exceed 30 characters."
# Check if the text contains only allowed characters
if not re.match(r"^[A-Za-z0-9_]+$", input_text):
return (
False,
"Input contains invalid characters. Only letters, numbers and underscores are allowed.",
)
return True, "Input is valid."
def delete_entries(prj_id, page_names, db_cred=None, schema=None):
"""
Deletes all entries from the project_meta_data table based on prj_id and a list of page names.
Parameters:
prj_id (int): The project ID.
page_names (list): A list of page names.
db_cred (dict): Database credentials with keys 'dbname', 'user', 'password', 'host', 'port'.
schema (str): The schema name.
"""
# Create placeholders for each page name in the list
placeholders = ", ".join(["?"] * len(page_names))
query = f"""
DELETE FROM mmo_project_meta_data
WHERE prj_id = ? AND page_nam IN ({placeholders});
"""
# Combine prj_id and page_names into one list of parameters
params = (prj_id, *page_names)
query_excecuter_postgres(query, db_cred, params=params, insert=True)
# st.success(f"Deleted entries for project {prj_id}, page {page_name}")
def store_hashed_password(
user_id,
plain_text_password,
):
"""
Hashes a plain text password using bcrypt, converts it to a UTF-8 string, and stores it as text.
Parameters:
plain_text_password (str): The plain text password to be hashed.
db_cred (dict): The database credentials including dbname, user, password, host, and port.
"""
# Hash the plain text password
hashed_password = bcrypt.hashpw(
plain_text_password.encode("utf-8"), bcrypt.gensalt()
)
# Convert the byte string to a regular string for storage
hashed_password_str = hashed_password.decode("utf-8")
# SQL query to update the pswrd_key for the specified user_id
query = f"""
UPDATE mmo_users
SET pswrd_key = ?
WHERE emp_id = ?;
"""
# Execute the query using the existing query_excecuter_postgres function
query_excecuter_postgres(
query=query, db_cred=db_cred, params=(hashed_password_str, user_id), insert=True
)
def verify_password(user_id, plain_text_password):
"""
Verifies the plain text password against the stored hashed password for the specified user_id.
Parameters:
user_id (int): The ID of the user whose password is being verified.
plain_text_password (str): The plain text password to verify.
db_cred (dict): The database credentials including dbname, user, password, host, and port.
"""
# SQL query to retrieve the hashed password for the user_id
query = f"""
SELECT pswrd_key FROM mmo_users WHERE emp_id = ?;
"""
# Execute the query using the existing query_excecuter_postgres function
result = query_excecuter_postgres(
query=query, db_cred=db_cred, params=(user_id,), insert=False
)
if result:
stored_hashed_password_str = result[0][0]
# Convert the stored string back to bytes
stored_hashed_password = stored_hashed_password_str.encode("utf-8")
if bcrypt.checkpw(plain_text_password.encode("utf-8"), stored_hashed_password):
return True
else:
return False
else:
return False
def update_password_in_db(user_id, plain_text_password):
"""
Hashes the plain text password and updates the `pswrd_key`
column for the given `emp_id` in the `mmo_users` table.
Parameters:
emp_id (var): The ID of the user whose password needs to be updated.
plain_text_password (str): The plain text password to be hashed and stored.
db_cred (dict): Database credentials required to connect to the database.
"""
# Hash the plain text password using bcrypt
hashed_password = bcrypt.hashpw(
plain_text_password.encode("utf-8"), bcrypt.gensalt()
)
# Convert the hashed password from bytes to a string for storage
hashed_password_str = hashed_password.decode("utf-8")
# SQL query to update the password in the database
query = f"""
UPDATE mmo_users
SET pswrd_key = ?
WHERE emp_id = ?
"""
# Parameters for the query
params = (hashed_password_str, user_id)
# Execute the query using the query_excecuter_postgres function
query_excecuter_postgres(query, db_cred, params=params, insert=True)
def is_pswrd_flag_set(user_id):
query = f"""
SELECT pswrd_flag
FROM mmo_users
WHERE emp_id = ?;
"""
# Execute the query
result = query_excecuter_postgres(query, db_cred, params=(user_id,), insert=False)
# Return True if the flag is 1, otherwise return False
if result and result[0][0] == 1:
return True
else:
return False
def set_pswrd_flag(user_id):
query = f"""
UPDATE mmo_users
SET pswrd_flag = 1
WHERE emp_id = ?;
"""
# Execute the update query
query_excecuter_postgres(query, db_cred, params=(user_id,), insert=True)
def retrieve_pkl_object_without_warning(prj_id, page_nam, file_nam, schema):
query = f"""
SELECT pkl_obj FROM mmo_project_meta_data
WHERE prj_id = ? AND page_nam = ? AND file_nam = ?;
"""
params = (prj_id, page_nam, file_nam)
result = query_excecuter_postgres(
query, db_cred=db_cred, params=params, insert=False
)
if result and result[0] and result[0][0]:
pkl_obj = result[0][0]
# Deserialize the pickle object
return pickle.loads(pkl_obj)
else:
# st.warning(
# "Pickle object not found for the given project ID, page name, and file name."
# )
return None
color_palette = [
"#F3F3F0",
"#5E7D7E",
"#2FA1FF",
"#00EDED",
"#00EAE4",
"#304550",
"#EDEBEB",
"#7FBEFD",
"#003059",
"#A2F3F3",
"#E1D6E2",
"#B6B6B6",
]
CURRENCY_INDICATOR = "$"
# database_file = r"DB/User.db"
# conn = sqlite3.connect(database_file, check_same_thread=False) # connection with sql db
# c = conn.cursor()
# def load_authenticator():
# with open("config.yaml") as file:
# config = yaml.load(file, Loader=SafeLoader)
# st.session_state["config"] = config
# authenticator = stauth.Authenticate(
# credentials=config["credentials"],
# cookie_name=config["cookie"]["name"],
# key=config["cookie"]["key"],
# cookie_expiry_days=config["cookie"]["expiry_days"],
# preauthorized=config["preauthorized"],
# )
# st.session_state["authenticator"] = authenticator
# return authenticator
# Authentication
# def authenticator():
# for k, v in st.session_state.items():
# if k not in ["logout", "login", "config"] and not k.startswith(
# "FormSubmitter"
# ):
# st.session_state[k] = v
# with open("config.yaml") as file:
# config = yaml.load(file, Loader=SafeLoader)
# st.session_state["config"] = config
# authenticator = stauth.Authenticate(
# config["credentials"],
# config["cookie"]["name"],
# config["cookie"]["key"],
# config["cookie"]["expiry_days"],
# config["preauthorized"],
# )
# st.session_state["authenticator"] = authenticator
# name, authentication_status, username = authenticator.login(
# "Login", "main"
# )
# auth_status = st.session_state.get("authentication_status")
# if auth_status == True:
# authenticator.logout("Logout", "main")
# is_state_initiaized = st.session_state.get("initialized", False)
# if not is_state_initiaized:
# if "session_name" not in st.session_state:
# st.session_state["session_name"] = None
# return name
# def authentication():
# with open("config.yaml") as file:
# config = yaml.load(file, Loader=SafeLoader)
# authenticator = stauth.Authenticate(
# config["credentials"],
# config["cookie"]["name"],
# config["cookie"]["key"],
# config["cookie"]["expiry_days"],
# config["preauthorized"],
# )
# name, authentication_status, username = authenticator.login(
# "Login", "main"
# )
# return authenticator, name, authentication_status, username
def nav_page(page_name, timeout_secs=3):
nav_script = """
<script type="text/javascript">
function attempt_nav_page(page_name, start_time, timeout_secs) {
var links = window.parent.document.getElementsByTagName("a");
for (var i = 0; i < links.length; i++) {
if (links[i].href.toLowerCase().endsWith("/" + page_name.toLowerCase())) {
links[i].click();
return;
}
}
var elasped = new Date() - start_time;
if (elasped < timeout_secs * 1000) {
setTimeout(attempt_nav_page, 100, page_name, start_time, timeout_secs);
} else {
alert("Unable to navigate to page '" + page_name + "' after " + timeout_secs + " second(s).");
}
}
window.addEventListener("load", function() {
attempt_nav_page("%s", new Date(), %d);
});
</script>
""" % (
page_name,
timeout_secs,
)
html(nav_script)
# def load_local_css(file_name):
# with open(file_name) as f:
# st.markdown(f'<style>{f.read()}</style>', unsafe_allow_html=True)
# def set_header():
# return st.markdown(f"""<div class='main-header'>
# <h1>MMM LiME</h1>
# <img src="https://assets-global.website-files.com/64c8fffb0e95cbc525815b79/64df84637f83a891c1473c51_Vector%20(Stroke).svg ">
# </div>""", unsafe_allow_html=True)
path = os.path.dirname(__file__)
file_ = open(f"{path}/logo.png", "rb")
contents = file_.read()
data_url = base64.b64encode(contents).decode("utf-8")
file_.close()
DATA_PATH = "./data"
IMAGES_PATH = "./data/images_224_224"
def load_local_css(file_name):
with open(file_name) as f:
st.markdown(f"<style>{f.read()}</style>", unsafe_allow_html=True)
# def set_header():
# return st.markdown(f"""<div class='main-header'>
# <h1>H & M Recommendations</h1>
# <img src="data:image;base64,{data_url}", alt="Logo">
# </div>""", unsafe_allow_html=True)
path1 = os.path.dirname(__file__)
# file_1 = open(f"{path}/willbank.png", "rb")
# contents1 = file_1.read()
# data_url1 = base64.b64encode(contents1).decode("utf-8")
# file_1.close()
DATA_PATH1 = "./data"
IMAGES_PATH1 = "./data/images_224_224"
def set_header():
return st.markdown(
f"""<div class='main-header'>
<!-- <h1></h1> -->
<div >
<img class='blend-logo' src="data:image;base64,{data_url}", alt="Logo">
</div>""",
unsafe_allow_html=True,
)
# def set_header():
# logo_path = "./path/to/your/local/LIME_logo.png" # Replace with the actual file path
# text = "LiME"
# return st.markdown(f"""<div class='main-header'>
# <img src="data:image/png;base64,{data_url}" alt="Logo" style="float: left; margin-right: 10px; width: 100px; height: auto;">
# <h1>{text}</h1>
# </div>""", unsafe_allow_html=True)
def s_curve(x, K, b, a, x0):
return K / (1 + b * np.exp(-a * (x - x0)))
def panel_level(input_df, date_column="Date"):
# Ensure 'Date' is set as the index
if date_column not in input_df.index.names:
input_df = input_df.set_index(date_column)
# Select numeric columns only (excluding 'Date' since it's now the index)
numeric_columns_df = input_df.select_dtypes(include="number")
# Group by 'Date' (which is the index) and sum the numeric columns
aggregated_df = numeric_columns_df.groupby(input_df.index).sum()
# Reset the index to bring the 'Date' column
aggregated_df = aggregated_df.reset_index()
return aggregated_df
def fetch_actual_data(
panel=None,
target_file="Overview_data_test.xlsx",
updated_rcs=None,
metrics=None,
):
excel = pd.read_excel(Path(target_file), sheet_name=None)
# Extract dataframes for raw data, spend input, and contribution MMM
raw_df = excel["RAW DATA MMM"]
spend_df = excel["SPEND INPUT"]
contri_df = excel["CONTRIBUTION MMM"]
# Check if the panel is not None
if panel is not None and panel != "Aggregated":
raw_df = raw_df[raw_df["Panel"] == panel].drop(columns=["Panel"])
spend_df = spend_df[spend_df["Panel"] == panel].drop(columns=["Panel"])
contri_df = contri_df[contri_df["Panel"] == panel].drop(columns=["Panel"])
elif panel == "Aggregated":
raw_df = panel_level(raw_df, date_column="Date")
spend_df = panel_level(spend_df, date_column="Week")
contri_df = panel_level(contri_df, date_column="Date")
# Revenue_df = excel['Revenue']
## remove sesonalities, indices etc ...
unnamed_cols = [col for col in raw_df.columns if col.lower().startswith("unnamed")]
## remove sesonalities, indices etc ...
exclude_columns = [
"Date",
"Region",
"Controls_Grammarly_Index_SeasonalAVG",
"Controls_Quillbot_Index",
"Daily_Positive_Outliers",
"External_RemoteClass_Index",
"Intervals ON 20190520-20190805 | 20200518-20200803 | 20210517-20210802",
"Intervals ON 20190826-20191209 | 20200824-20201207 | 20210823-20211206",
"Intervals ON 20201005-20201019",
"Promotion_PercentOff",
"Promotion_TimeBased",
"Seasonality_Indicator_Chirstmas",
"Seasonality_Indicator_NewYears_Days",
"Seasonality_Indicator_Thanksgiving",
"Trend 20200302 / 20200803",
] + unnamed_cols
raw_df["Date"] = pd.to_datetime(raw_df["Date"])
contri_df["Date"] = pd.to_datetime(contri_df["Date"])
input_df = raw_df.sort_values(by="Date")
output_df = contri_df.sort_values(by="Date")
spend_df["Week"] = pd.to_datetime(
spend_df["Week"], format="%Y-%m-%d", errors="coerce"
)
spend_df.sort_values(by="Week", inplace=True)
# spend_df['Week'] = pd.to_datetime(spend_df['Week'], errors='coerce')
# spend_df = spend_df.sort_values(by='Week')
channel_list = [col for col in input_df.columns if col not in exclude_columns]
channel_list = list(set(channel_list) - set(["fb_level_achieved_tier_1", "ga_app"]))
infeasible_channels = [
c
for c in contri_df.select_dtypes(include=["float", "int"]).columns
if contri_df[c].sum() <= 0
]
# st.write(channel_list)
channel_list = list(set(channel_list) - set(infeasible_channels))
upper_limits = {}
output_cols = []
actual_output_dic = {}
actual_input_dic = {}
for inp_col in channel_list:
# st.write(inp_col)
spends = input_df[inp_col].values
x = spends.copy()
# upper limit for penalty
upper_limits[inp_col] = 2 * x.max()
# contribution
# out_col = [_col for _col in output_df.columns if _col.startswith(inp_col)][0]
out_col = inp_col
y = output_df[out_col].values.copy()
actual_output_dic[inp_col] = y.copy()
actual_input_dic[inp_col] = x.copy()
##output cols aggregation
output_cols.append(out_col)
return pd.DataFrame(actual_input_dic), pd.DataFrame(actual_output_dic)
# Function to initialize model results data
def initialize_data(panel=None, metrics=None):
# Extract dataframes for raw data, spend input, and contribution data
raw_df = st.session_state["project_dct"]["current_media_performance"][
"model_outputs"
][metrics]["raw_data"].copy()
spend_df = st.session_state["project_dct"]["current_media_performance"][
"model_outputs"
][metrics]["spends_data"].copy()
contribution_df = st.session_state["project_dct"]["current_media_performance"][
"model_outputs"
][metrics]["contribution_data"].copy()
# Check if 'Panel' or 'panel' is in the columns
panel_column = None
if "Panel" in raw_df.columns:
panel_column = "Panel"
elif "panel" in raw_df.columns:
panel_column = "panel"
# Filter data by panel if provided
if panel and panel.lower() != "aggregated":
raw_df = raw_df[raw_df[panel_column] == panel].drop(columns=[panel_column])
spend_df = spend_df[spend_df[panel_column] == panel].drop(
columns=[panel_column]
)
contribution_df = contribution_df[contribution_df[panel_column] == panel].drop(
columns=[panel_column]
)
else:
raw_df = panel_level(raw_df, date_column="Date")
spend_df = panel_level(spend_df, date_column="Date")
contribution_df = panel_level(contribution_df, date_column="Date")
# Remove unnecessary columns
unnamed_cols = [col for col in raw_df.columns if col.lower().startswith("unnamed")]
exclude_columns = ["Date"] + unnamed_cols
# Convert Date columns to datetime
for df in [raw_df, spend_df, contribution_df]:
df["Date"] = pd.to_datetime(df["Date"], format="%Y-%m-%d", errors="coerce")
# Sort data by Date
input_df = raw_df.sort_values(by="Date")
contribution_df = contribution_df.sort_values(by="Date")
spend_df.sort_values(by="Date", inplace=True)
# Extract channels excluding unwanted columns
channel_list = [col for col in input_df.columns if col not in exclude_columns]
# Filter out channels with non-positive contributions
negative_contributions = [
col
for col in contribution_df.select_dtypes(include=["float", "int"]).columns
if contribution_df[col].sum() <= 0
]
channel_list = list(set(channel_list) - set(negative_contributions))
# Initialize dictionaries for metrics and response curves
response_curves, mapes, rmses, upper_limits = {}, {}, {}, {}
r2_scores, powers, conversion_rates, actual_output, actual_input = (
{},
{},
{},
{},
{},
)
channels = {}
sales = None
dates = input_df["Date"].values
# Fit s-curve for each channel
for channel in channel_list:
spends = input_df[channel].values
x = spends.copy()
upper_limits[channel] = 2 * x.max()
# Get corresponding output column
output_col = [
_col for _col in contribution_df.columns if _col.startswith(channel)
][0]
y = contribution_df[output_col].values.copy()
actual_output[channel] = y.copy()
actual_input[channel] = x.copy()
# Scale input data
power = np.ceil(np.log(x.max()) / np.log(10)) - 3
if power >= 0:
x = x / 10**power
x, y = x.astype("float64"), y.astype("float64")
# Set bounds for curve fitting
if y.max() <= 0.01:
bounds = (
(0, 0, 0, 0),
(3 * 0.01, 1000, 1, x.max() if x.max() > 0 else 0.01),
)
else:
bounds = ((0, 0, 0, 0), (3 * y.max(), 1000, 1, x.max()))
# Set y to 0 where x is 0
y[x == 0] = 0
# Fit s-curve and calculate metrics
# params, _ = curve_fit(
# s_curve,
# x
# y,
# p0=(2 * y.max(), 0.01, 1e-5, x.max()),
# bounds=bounds,
# maxfev=int(1e6),
# )
params, _ = curve_fit(
s_curve,
list(x) + [0] * len(x),
list(y) + [0] * len(y),
p0=(2 * y.max(), 0.01, 1e-5, x.max()),
bounds=bounds,
maxfev=int(1e6),
)
mape = (100 * abs(1 - s_curve(x, *params) / y.clip(min=1))).mean()
rmse = np.sqrt(((y - s_curve(x, *params)) ** 2).mean())
r2_score_ = r2_score(y, s_curve(x, *params))
# Store metrics and parameters
response_curves[channel] = {
"K": params[0],
"b": params[1],
"a": params[2],
"x0": params[3],
}
mapes[channel] = mape
rmses[channel] = rmse
r2_scores[channel] = r2_score_
powers[channel] = power
conversion_rate = spend_df[channel].sum() / max(input_df[channel].sum(), 1e-9)
conversion_rates[channel] = conversion_rate
correction = y - s_curve(x, *params)
# Initialize Channel object
channel_obj = Channel(
name=channel,
dates=dates,
spends=spends,
conversion_rate=conversion_rate,
response_curve_type="s-curve",
response_curve_params={
"K": params[0],
"b": params[1],
"a": params[2],
"x0": params[3],
},
bounds=np.array([-10, 10]),
correction=correction,
)
channels[channel] = channel_obj
if sales is None:
sales = channel_obj.actual_sales
else:
sales += channel_obj.actual_sales
# Calculate other contributions
other_contributions = (
contribution_df.drop(columns=[*response_curves.keys()])
.sum(axis=1, numeric_only=True)
.values
)
# Initialize Scenario object
scenario = Scenario(
name="default",
channels=channels,
constant=other_contributions,
correction=np.array([]),
)
# Set session state variables
st.session_state.update(
{
"initialized": True,
"actual_df": input_df,
"raw_df": raw_df,
"contri_df": contribution_df,
"default_scenario_dict": class_to_dict(scenario),
"scenario": scenario,
"channels_list": channel_list,
"optimization_channels": {
channel_name: False for channel_name in channel_list
},
"rcs": response_curves.copy(),
"powers": powers,
"actual_contribution_df": pd.DataFrame(actual_output),
"actual_input_df": pd.DataFrame(actual_input),
"xlsx_buffer": io.BytesIO(),
"saved_scenarios": (
pickle.load(open("../saved_scenarios.pkl", "rb"))
if Path("../saved_scenarios.pkl").exists()
else OrderedDict()
),
"disable_download_button": True,
}
)
for channel in channels.values():
st.session_state[channel.name] = numerize(
channel.actual_total_spends * channel.conversion_rate, 1
)
# Prepare response curve data for output
response_curve_data = {}
for channel, params in st.session_state["rcs"].items():
x = st.session_state["actual_input_df"][channel].values.astype(float)
y = st.session_state["actual_contribution_df"][channel].values.astype(float)
power = float(np.ceil(np.log(max(x)) / np.log(10)) - 3)
x_plot = list(np.linspace(0, 5 * max(x), 100))
response_curve_data[channel] = {
"K": float(params["K"]),
"b": float(params["b"]),
"a": float(params["a"]),
"x0": float(params["x0"]),
"power": power,
"x": list(x),
"y": list(y),
"x_plot": x_plot,
}
return response_curve_data, scenario
# def initialize_data(panel=None, metrics=None):
# # Extract dataframes for raw data, spend input, and contribution data
# raw_df = st.session_state["project_dct"]["current_media_performance"][
# "model_outputs"
# ][metrics]["raw_data"]
# spend_df = st.session_state["project_dct"]["current_media_performance"][
# "model_outputs"
# ][metrics]["spends_data"]
# contri_df = st.session_state["project_dct"]["current_media_performance"][
# "model_outputs"
# ][metrics]["contribution_data"]
# # Check if the panel is not None
# if panel is not None and panel.lower() != "aggregated":
# raw_df = raw_df[raw_df["Panel"] == panel].drop(columns=["Panel"])
# spend_df = spend_df[spend_df["Panel"] == panel].drop(columns=["Panel"])
# contri_df = contri_df[contri_df["Panel"] == panel].drop(columns=["Panel"])
# elif panel.lower() == "aggregated":
# raw_df = panel_level(raw_df, date_column="Date")
# spend_df = panel_level(spend_df, date_column="Date")
# contri_df = panel_level(contri_df, date_column="Date")
# ## remove sesonalities, indices etc ...
# unnamed_cols = [col for col in raw_df.columns if col.lower().startswith("unnamed")]
# ## remove sesonalities, indices etc ...
# exclude_columns = ["Date"] + unnamed_cols
# raw_df["Date"] = pd.to_datetime(raw_df["Date"], format="%Y-%m-%d", errors="coerce")
# contri_df["Date"] = pd.to_datetime(
# contri_df["Date"], format="%Y-%m-%d", errors="coerce"
# )
# spend_df["Date"] = pd.to_datetime(
# spend_df["Date"], format="%Y-%m-%d", errors="coerce"
# )
# input_df = raw_df.sort_values(by="Date")
# output_df = contri_df.sort_values(by="Date")
# spend_df.sort_values(by="Date", inplace=True)
# channel_list = [col for col in input_df.columns if col not in exclude_columns]
# negative_contribution = [
# c
# for c in contri_df.select_dtypes(include=["float", "int"]).columns
# if contri_df[c].sum() <= 0
# ]
# channel_list = list(set(channel_list) - set(negative_contribution))
# response_curves = {}
# mapes = {}
# rmses = {}
# upper_limits = {}
# powers = {}
# r2 = {}
# conv_rates = {}
# output_cols = []
# channels = {}
# sales = None
# dates = input_df.Date.values
# actual_output_dic = {}
# actual_input_dic = {}
# for inp_col in channel_list:
# spends = input_df[inp_col].values
# x = spends.copy()
# # upper limit for penalty
# upper_limits[inp_col] = 2 * x.max()
# # contribution
# out_col = [_col for _col in output_df.columns if _col.startswith(inp_col)][0]
# y = output_df[out_col].values.copy()
# actual_output_dic[inp_col] = y.copy()
# actual_input_dic[inp_col] = x.copy()
# ##output cols aggregation
# output_cols.append(out_col)
# ## scale the input
# power = np.ceil(np.log(x.max()) / np.log(10)) - 3
# if power >= 0:
# x = x / 10**power
# x = x.astype("float64")
# y = y.astype("float64")
# if y.max() <= 0.01:
# if x.max() <= 0.0:
# bounds = ((0, 0, 0, 0), (3 * 0.01, 1000, 1, 0.01))
# else:
# bounds = ((0, 0, 0, 0), (3 * 0.01, 1000, 1, x.max()))
# else:
# bounds = ((0, 0, 0, 0), (3 * y.max(), 1000, 1, x.max()))
# params, _ = curve_fit(
# s_curve,
# x,
# y,
# p0=(2 * y.max(), 0.01, 1e-5, x.max()),
# bounds=bounds,
# maxfev=int(1e5),
# )
# mape = (100 * abs(1 - s_curve(x, *params) / y.clip(min=1))).mean()
# rmse = np.sqrt(((y - s_curve(x, *params)) ** 2).mean())
# r2_ = r2_score(y, s_curve(x, *params))
# response_curves[inp_col] = {
# "K": params[0],
# "b": params[1],
# "a": params[2],
# "x0": params[3],
# }
# mapes[inp_col] = mape
# rmses[inp_col] = rmse
# r2[inp_col] = r2_
# powers[inp_col] = power
# conv = spend_df[inp_col].sum() / max(input_df[inp_col].sum(), 1e-9)
# conv_rates[inp_col] = conv
# correction = y - s_curve(x, *params)
# channel = Channel(
# name=inp_col,
# dates=dates,
# spends=spends,
# conversion_rate=conv_rates[inp_col],
# response_curve_type="s-curve",
# response_curve_params={
# "K": params[0],
# "b": params[1],
# "a": params[2],
# "x0": params[3],
# },
# bounds=np.array([-10, 10]),
# correction=correction,
# )
# channels[inp_col] = channel
# if sales is None:
# sales = channel.actual_sales
# else:
# sales += channel.actual_sales
# other_contributions = (
# output_df.drop([*output_cols], axis=1).sum(axis=1, numeric_only=True).values
# )
# scenario = Scenario(
# name="default",
# channels=channels,
# constant=other_contributions,
# correction=np.array([]),
# )
# ## setting session variables
# st.session_state["initialized"] = True
# st.session_state["actual_df"] = input_df
# st.session_state["raw_df"] = raw_df
# st.session_state["contri_df"] = output_df
# default_scenario_dict = class_to_dict(scenario)
# st.session_state["default_scenario_dict"] = default_scenario_dict
# st.session_state["scenario"] = scenario
# st.session_state["channels_list"] = channel_list
# st.session_state["optimization_channels"] = {
# channel_name: False for channel_name in channel_list
# }
# st.session_state["rcs"] = response_curves.copy()
# st.session_state["powers"] = powers
# st.session_state["actual_contribution_df"] = pd.DataFrame(actual_output_dic)
# st.session_state["actual_input_df"] = pd.DataFrame(actual_input_dic)
# for channel in channels.values():
# st.session_state[channel.name] = numerize(
# channel.actual_total_spends * channel.conversion_rate, 1
# )
# st.session_state["xlsx_buffer"] = io.BytesIO()
# if Path("../saved_scenarios.pkl").exists():
# with open("../saved_scenarios.pkl", "rb") as f:
# st.session_state["saved_scenarios"] = pickle.load(f)
# else:
# st.session_state["saved_scenarios"] = OrderedDict()
# # st.session_state["total_spends_change"] = 0
# st.session_state["optimization_channels"] = {
# channel_name: False for channel_name in channel_list
# }
# st.session_state["disable_download_button"] = True
# rcs_data = {}
# for channel in st.session_state["rcs"]:
# # Convert to native Python lists and types
# x = list(st.session_state["actual_input_df"][channel].values.astype(float))
# y = list(
# st.session_state["actual_contribution_df"][channel].values.astype(float)
# )
# power = float(np.ceil(np.log(max(x)) / np.log(10)) - 3)
# x_plot = list(np.linspace(0, 5 * max(x), 100))
# rcs_data[channel] = {
# "K": float(st.session_state["rcs"][channel]["K"]),
# "b": float(st.session_state["rcs"][channel]["b"]),
# "a": float(st.session_state["rcs"][channel]["a"]),
# "x0": float(st.session_state["rcs"][channel]["x0"]),
# "power": power,
# "x": x,
# "y": y,
# "x_plot": x_plot,
# }
# return rcs_data, scenario
# def initialize_data():
# # fetch data from excel
# output = pd.read_excel('data.xlsx',sheet_name=None)
# raw_df = output['RAW DATA MMM']
# contribution_df = output['CONTRIBUTION MMM']
# Revenue_df = output['Revenue']
# ## channels to be shows
# channel_list = []
# for col in raw_df.columns:
# if 'click' in col.lower() or 'spend' in col.lower() or 'imp' in col.lower():
# channel_list.append(col)
# else:
# pass
# ## NOTE : Considered only Desktop spends for all calculations
# acutal_df = raw_df[raw_df.Region == 'Desktop'].copy()
# ## NOTE : Considered one year of data
# acutal_df = acutal_df[acutal_df.Date>'2020-12-31']
# actual_df = acutal_df.drop('Region',axis=1).sort_values(by='Date')[[*channel_list,'Date']]
# ##load response curves
# with open('./grammarly_response_curves.json','r') as f:
# response_curves = json.load(f)
# ## create channel dict for scenario creation
# dates = actual_df.Date.values
# channels = {}
# rcs = {}
# constant = 0.
# for i,info_dict in enumerate(response_curves):
# name = info_dict.get('name')
# response_curve_type = info_dict.get('response_curve')
# response_curve_params = info_dict.get('params')
# rcs[name] = response_curve_params
# if name != 'constant':
# spends = actual_df[name].values
# channel = Channel(name=name,dates=dates,
# spends=spends,
# response_curve_type=response_curve_type,
# response_curve_params=response_curve_params,
# bounds=np.array([-30,30]))
# channels[name] = channel
# else:
# constant = info_dict.get('value',0.) * len(dates)
# ## create scenario
# scenario = Scenario(name='default', channels=channels, constant=constant)
# default_scenario_dict = class_to_dict(scenario)
# ## setting session variables
# st.session_state['initialized'] = True
# st.session_state['actual_df'] = actual_df
# st.session_state['raw_df'] = raw_df
# st.session_state['default_scenario_dict'] = default_scenario_dict
# st.session_state['scenario'] = scenario
# st.session_state['channels_list'] = channel_list
# st.session_state['optimization_channels'] = {channel_name : False for channel_name in channel_list}
# st.session_state['rcs'] = rcs
# for channel in channels.values():
# if channel.name not in st.session_state:
# st.session_state[channel.name] = float(channel.actual_total_spends)
# if 'xlsx_buffer' not in st.session_state:
# st.session_state['xlsx_buffer'] = io.BytesIO()
# ## for saving scenarios
# if 'saved_scenarios' not in st.session_state:
# if Path('../saved_scenarios.pkl').exists():
# with open('../saved_scenarios.pkl','rb') as f:
# st.session_state['saved_scenarios'] = pickle.load(f)
# else:
# st.session_state['saved_scenarios'] = OrderedDict()
# if 'total_spends_change' not in st.session_state:
# st.session_state['total_spends_change'] = 0
# if 'optimization_channels' not in st.session_state:
# st.session_state['optimization_channels'] = {channel_name : False for channel_name in channel_list}
# if 'disable_download_button' not in st.session_state:
# st.session_state['disable_download_button'] = True
def create_channel_summary(scenario):
# Provided data
data = {
"Channel": [
"Paid Search",
"Ga will cid baixo risco",
"Digital tactic others",
"Fb la tier 1",
"Fb la tier 2",
"Paid social others",
"Programmatic",
"Kwai",
"Indicacao",
"Infleux",
"Influencer",
],
"Spends": [
"$ 11.3K",
"$ 155.2K",
"$ 50.7K",
"$ 125.4K",
"$ 125.2K",
"$ 105K",
"$ 3.3M",
"$ 47.5K",
"$ 55.9K",
"$ 632.3K",
"$ 48.3K",
],
"Revenue": [
"558.0K",
"3.5M",
"5.2M",
"3.1M",
"3.1M",
"2.1M",
"20.8M",
"1.6M",
"728.4K",
"22.9M",
"4.8M",
],
}
# Create DataFrame
df = pd.DataFrame(data)
# Convert currency strings to numeric values
df["Spends"] = (
df["Spends"]
.replace({"\$": "", "K": "*1e3", "M": "*1e6"}, regex=True)
.map(pd.eval)
.astype(int)
)
df["Revenue"] = (
df["Revenue"]
.replace({"\$": "", "K": "*1e3", "M": "*1e6"}, regex=True)
.map(pd.eval)
.astype(int)
)
# Calculate ROI
df["ROI"] = (df["Revenue"] - df["Spends"]) / df["Spends"]
# Format columns
format_currency = lambda x: f"${x:,.1f}"
format_roi = lambda x: f"{x:.1f}"
df["Spends"] = [
"$ 11.3K",
"$ 155.2K",
"$ 50.7K",
"$ 125.4K",
"$ 125.2K",
"$ 105K",
"$ 3.3M",
"$ 47.5K",
"$ 55.9K",
"$ 632.3K",
"$ 48.3K",
]
df["Revenue"] = [
"$ 536.3K",
"$ 3.4M",
"$ 5M",
"$ 3M",
"$ 3M",
"$ 2M",
"$ 20M",
"$ 1.5M",
"$ 7.1M",
"$ 22M",
"$ 4.6M",
]
df["ROI"] = df["ROI"].apply(format_roi)
return df
# @st.cache(allow_output_mutation=True)
# def create_contribution_pie(scenario):
# #c1f7dc
# colors_map = {col:color for col,color in zip(st.session_state['channels_list'],plotly.colors.n_colors(plotly.colors.hex_to_rgb('#BE6468'), plotly.colors.hex_to_rgb('#E7B8B7'),23))}
# total_contribution_fig = make_subplots(rows=1, cols=2,subplot_titles=['Spends','Revenue'],specs=[[{"type": "pie"}, {"type": "pie"}]])
# total_contribution_fig.add_trace(
# go.Pie(labels=[channel_name_formating(channel_name) for channel_name in st.session_state['channels_list']] + ['Non Media'],
# values= [round(scenario.channels[channel_name].actual_total_spends * scenario.channels[channel_name].conversion_rate,1) for channel_name in st.session_state['channels_list']] + [0],
# marker=dict(colors = [plotly.colors.label_rgb(colors_map[channel_name]) for channel_name in st.session_state['channels_list']] + ['#F0F0F0']),
# hole=0.3),
# row=1, col=1)
# total_contribution_fig.add_trace(
# go.Pie(labels=[channel_name_formating(channel_name) for channel_name in st.session_state['channels_list']] + ['Non Media'],
# values= [scenario.channels[channel_name].actual_total_sales for channel_name in st.session_state['channels_list']] + [scenario.correction.sum() + scenario.constant.sum()],
# hole=0.3),
# row=1, col=2)
# total_contribution_fig.update_traces(textposition='inside',texttemplate='%{percent:.1%}')
# total_contribution_fig.update_layout(uniformtext_minsize=12,title='Channel contribution', uniformtext_mode='hide')
# return total_contribution_fig
# @st.cache(allow_output_mutation=True)
# def create_contribuion_stacked_plot(scenario):
# weekly_contribution_fig = make_subplots(rows=1, cols=2,subplot_titles=['Spends','Revenue'],specs=[[{"type": "bar"}, {"type": "bar"}]])
# raw_df = st.session_state['raw_df']
# df = raw_df.sort_values(by='Date')
# x = df.Date
# weekly_spends_data = []
# weekly_sales_data = []
# for channel_name in st.session_state['channels_list']:
# weekly_spends_data.append((go.Bar(x=x,
# y=scenario.channels[channel_name].actual_spends * scenario.channels[channel_name].conversion_rate,
# name=channel_name_formating(channel_name),
# hovertemplate="Date:%{x}<br>Spend:%{y:$.2s}",
# legendgroup=channel_name)))
# weekly_sales_data.append((go.Bar(x=x,
# y=scenario.channels[channel_name].actual_sales,
# name=channel_name_formating(channel_name),
# hovertemplate="Date:%{x}<br>Revenue:%{y:$.2s}",
# legendgroup=channel_name, showlegend=False)))
# for _d in weekly_spends_data:
# weekly_contribution_fig.add_trace(_d, row=1, col=1)
# for _d in weekly_sales_data:
# weekly_contribution_fig.add_trace(_d, row=1, col=2)
# weekly_contribution_fig.add_trace(go.Bar(x=x,
# y=scenario.constant + scenario.correction,
# name='Non Media',
# hovertemplate="Date:%{x}<br>Revenue:%{y:$.2s}"), row=1, col=2)
# weekly_contribution_fig.update_layout(barmode='stack', title='Channel contribuion by week', xaxis_title='Date')
# weekly_contribution_fig.update_xaxes(showgrid=False)
# weekly_contribution_fig.update_yaxes(showgrid=False)
# return weekly_contribution_fig
# @st.cache(allow_output_mutation=True)
# def create_channel_spends_sales_plot(channel):
# if channel is not None:
# x = channel.dates
# _spends = channel.actual_spends * channel.conversion_rate
# _sales = channel.actual_sales
# channel_sales_spends_fig = make_subplots(specs=[[{"secondary_y": True}]])
# channel_sales_spends_fig.add_trace(go.Bar(x=x, y=_sales,marker_color='#c1f7dc',name='Revenue', hovertemplate="Date:%{x}<br>Revenue:%{y:$.2s}"), secondary_y = False)
# channel_sales_spends_fig.add_trace(go.Scatter(x=x, y=_spends,line=dict(color='#005b96'),name='Spends',hovertemplate="Date:%{x}<br>Spend:%{y:$.2s}"), secondary_y = True)
# channel_sales_spends_fig.update_layout(xaxis_title='Date',yaxis_title='Revenue',yaxis2_title='Spends ($)',title='Channel spends and Revenue week wise')
# channel_sales_spends_fig.update_xaxes(showgrid=False)
# channel_sales_spends_fig.update_yaxes(showgrid=False)
# else:
# raw_df = st.session_state['raw_df']
# df = raw_df.sort_values(by='Date')
# x = df.Date
# scenario = class_from_dict(st.session_state['default_scenario_dict'])
# _sales = scenario.constant + scenario.correction
# channel_sales_spends_fig = make_subplots(specs=[[{"secondary_y": True}]])
# channel_sales_spends_fig.add_trace(go.Bar(x=x, y=_sales,marker_color='#c1f7dc',name='Revenue', hovertemplate="Date:%{x}<br>Revenue:%{y:$.2s}"), secondary_y = False)
# # channel_sales_spends_fig.add_trace(go.Scatter(x=x, y=_spends,line=dict(color='#15C39A'),name='Spends',hovertemplate="Date:%{x}<br>Spend:%{y:$.2s}"), secondary_y = True)
# channel_sales_spends_fig.update_layout(xaxis_title='Date',yaxis_title='Revenue',yaxis2_title='Spends ($)',title='Channel spends and Revenue week wise')
# channel_sales_spends_fig.update_xaxes(showgrid=False)
# channel_sales_spends_fig.update_yaxes(showgrid=False)
# return channel_sales_spends_fig
# Define a shared color palette
def create_contribution_pie():
color_palette = [
"#F3F3F0",
"#5E7D7E",
"#2FA1FF",
"#00EDED",
"#00EAE4",
"#304550",
"#EDEBEB",
"#7FBEFD",
"#003059",
"#A2F3F3",
"#E1D6E2",
"#B6B6B6",
]
total_contribution_fig = make_subplots(
rows=1,
cols=2,
subplot_titles=["Spends", "Revenue"],
specs=[[{"type": "pie"}, {"type": "pie"}]],
)
channels_list = [
"Paid Search",
"Ga will cid baixo risco",
"Digital tactic others",
"Fb la tier 1",
"Fb la tier 2",
"Paid social others",
"Programmatic",
"Kwai",
"Indicacao",
"Infleux",
"Influencer",
"Non Media",
]
# Assign colors from the limited palette to channels
colors_map = {
col: color_palette[i % len(color_palette)]
for i, col in enumerate(channels_list)
}
colors_map["Non Media"] = color_palette[
5
] # Assign fixed green color for 'Non Media'
# Hardcoded values for Spends and Revenue
spends_values = [0.5, 3.36, 1.1, 2.7, 2.7, 2.27, 70.6, 1, 1, 13.7, 1, 0]
revenue_values = [1, 4, 5, 3, 3, 2, 50.8, 1.5, 0.7, 13, 0, 16]
# Add trace for Spends pie chart
total_contribution_fig.add_trace(
go.Pie(
labels=[channel_name for channel_name in channels_list],
values=spends_values,
marker=dict(
colors=[colors_map[channel_name] for channel_name in channels_list]
),
hole=0.3,
),
row=1,
col=1,
)
# Add trace for Revenue pie chart
total_contribution_fig.add_trace(
go.Pie(
labels=[channel_name for channel_name in channels_list],
values=revenue_values,
marker=dict(
colors=[colors_map[channel_name] for channel_name in channels_list]
),
hole=0.3,
),
row=1,
col=2,
)
total_contribution_fig.update_traces(
textposition="inside", texttemplate="%{percent:.1%}"
)
total_contribution_fig.update_layout(
uniformtext_minsize=12,
title="Channel contribution",
uniformtext_mode="hide",
)
return total_contribution_fig
def create_contribuion_stacked_plot(scenario):
weekly_contribution_fig = make_subplots(
rows=1,
cols=2,
subplot_titles=["Spends", "Revenue"],
specs=[[{"type": "bar"}, {"type": "bar"}]],
)
raw_df = st.session_state["raw_df"]
df = raw_df.sort_values(by="Date")
x = df.Date
weekly_spends_data = []
weekly_sales_data = []
for i, channel_name in enumerate(st.session_state["channels_list"]):
color = color_palette[i % len(color_palette)]
weekly_spends_data.append(
go.Bar(
x=x,
y=scenario.channels[channel_name].actual_spends
* scenario.channels[channel_name].conversion_rate,
name=channel_name_formating(channel_name),
hovertemplate="Date:%{x}<br>Spend:%{y:$.2s}",
legendgroup=channel_name,
marker_color=color,
)
)
weekly_sales_data.append(
go.Bar(
x=x,
y=scenario.channels[channel_name].actual_sales,
name=channel_name_formating(channel_name),
hovertemplate="Date:%{x}<br>Revenue:%{y:$.2s}",
legendgroup=channel_name,
showlegend=False,
marker_color=color,
)
)
for _d in weekly_spends_data:
weekly_contribution_fig.add_trace(_d, row=1, col=1)
for _d in weekly_sales_data:
weekly_contribution_fig.add_trace(_d, row=1, col=2)
weekly_contribution_fig.add_trace(
go.Bar(
x=x,
y=scenario.constant + scenario.correction,
name="Non Media",
hovertemplate="Date:%{x}<br>Revenue:%{y:$.2s}",
marker_color=color_palette[-1],
),
row=1,
col=2,
)
weekly_contribution_fig.update_layout(
barmode="stack",
title="Channel contribution by week",
xaxis_title="Date",
)
weekly_contribution_fig.update_xaxes(showgrid=False)
weekly_contribution_fig.update_yaxes(showgrid=False)
return weekly_contribution_fig
def create_channel_spends_sales_plot(channel):
if channel is not None:
x = channel.dates
_spends = channel.actual_spends * channel.conversion_rate
_sales = channel.actual_sales
channel_sales_spends_fig = make_subplots(specs=[[{"secondary_y": True}]])
channel_sales_spends_fig.add_trace(
go.Bar(
x=x,
y=_sales,
marker_color=color_palette[
3
], # You can choose a color from the palette
name="Revenue",
hovertemplate="Date:%{x}<br>Revenue:%{y:$.2s}",
),
secondary_y=False,
)
channel_sales_spends_fig.add_trace(
go.Scatter(
x=x,
y=_spends,
line=dict(
color=color_palette[2]
), # You can choose another color from the palette
name="Spends",
hovertemplate="Date:%{x}<br>Spend:%{y:$.2s}",
),
secondary_y=True,
)
channel_sales_spends_fig.update_layout(
xaxis_title="Date",
yaxis_title="Revenue",
yaxis2_title="Spends ($)",
title="Channel spends and Revenue week-wise",
)
channel_sales_spends_fig.update_xaxes(showgrid=False)
channel_sales_spends_fig.update_yaxes(showgrid=False)
else:
raw_df = st.session_state["raw_df"]
df = raw_df.sort_values(by="Date")
x = df.Date
scenario = class_from_dict(st.session_state["default_scenario_dict"])
_sales = scenario.constant + scenario.correction
channel_sales_spends_fig = make_subplots(specs=[[{"secondary_y": True}]])
channel_sales_spends_fig.add_trace(
go.Bar(
x=x,
y=_sales,
marker_color=color_palette[
0
], # You can choose a color from the palette
name="Revenue",
hovertemplate="Date:%{x}<br>Revenue:%{y:$.2s}",
),
secondary_y=False,
)
channel_sales_spends_fig.update_layout(
xaxis_title="Date",
yaxis_title="Revenue",
yaxis2_title="Spends ($)",
title="Channel spends and Revenue week-wise",
)
channel_sales_spends_fig.update_xaxes(showgrid=False)
channel_sales_spends_fig.update_yaxes(showgrid=False)
return channel_sales_spends_fig
def format_numbers(value, n_decimals=1, include_indicator=True):
if value is None:
return None
_value = value if value < 1 else numerize(value, n_decimals)
if include_indicator:
return f"{CURRENCY_INDICATOR} {_value}"
else:
return f"{_value}"
def decimal_formater(num_string, n_decimals=1):
parts = num_string.split(".")
if len(parts) == 1:
return num_string + "." + "0" * n_decimals
else:
to_be_padded = n_decimals - len(parts[-1])
if to_be_padded > 0:
return num_string + "0" * to_be_padded
else:
return num_string
def channel_name_formating(channel_name):
name_mod = channel_name.replace("_", " ")
if name_mod.lower().endswith(" imp"):
name_mod = name_mod.replace("Imp", "Spend")
elif name_mod.lower().endswith(" clicks"):
name_mod = name_mod.replace("Clicks", "Spend")
return name_mod
def send_email(email, message):
s = smtplib.SMTP("smtp.gmail.com", 587)
s.starttls()
s.login("[email protected]", "jgydhpfusuremcol")
s.sendmail("[email protected]", email, message)
s.quit()
# if __name__ == "__main__":
# initialize_data()
#############################################################################################################
import os
import json
import streamlit as st
# Function to get panels names
def get_panels_names(file_selected):
raw_data_df = st.session_state["project_dct"]["current_media_performance"][
"model_outputs"
][file_selected]["raw_data"]
if "panel" in raw_data_df.columns:
panel = list(set(raw_data_df["panel"]))
elif "Panel" in raw_data_df.columns:
panel = list(set(raw_data_df["Panel"]))
else:
panel = []
return panel + ["aggregated"]
# Function to get metrics names
def get_metrics_names():
return list(
st.session_state["project_dct"]["current_media_performance"][
"model_outputs"
].keys()
)
# Function to load the original and modified rcs metadata files into dictionaries
def load_rcs_metadata_files():
original_data = st.session_state["project_dct"]["response_curves"][
"original_metadata_file"
]
modified_data = st.session_state["project_dct"]["response_curves"][
"modified_metadata_file"
]
return original_data, modified_data
# Function to format name
def name_formating(name):
# Replace underscores with spaces
name_mod = name.replace("_", " ")
# Capitalize the first letter of each word
name_mod = name_mod.title()
return name_mod
# Function to load the original and modified scenario metadata files into dictionaries
def load_scenario_metadata_files():
original_data = st.session_state["project_dct"]["scenario_planner"][
"original_metadata_file"
]
modified_data = st.session_state["project_dct"]["scenario_planner"][
"modified_metadata_file"
]
return original_data, modified_data
# Function to generate RCS data and store it as dictionary
def generate_rcs_data():
# Retrieve the list of all metric names from the specified directory
metrics_list = get_metrics_names()
# Dictionary to store RCS data for all metrics and their respective panels
all_rcs_data_original = {}
all_rcs_data_modified = {}
# Iterate over each metric in the metrics list
for metric in metrics_list:
# Retrieve the list of panel names from the current metric's Excel file
panel_list = get_panels_names(file_selected=metric)
# Check if rcs_data_modified exist
if (
st.session_state["project_dct"]["response_curves"]["modified_metadata_file"]
is not None
):
modified_data = st.session_state["project_dct"]["response_curves"][
"modified_metadata_file"
]
# Iterate over each panel in the panel list
for panel in panel_list:
# Initialize the original RCS data for the current panel and metric
rcs_dict_original, scenario = initialize_data(
panel=panel,
metrics=metric,
)
# Ensure the dictionary has the metric as a key for original data
if metric not in all_rcs_data_original:
all_rcs_data_original[metric] = {}
# Store the original RCS data under the corresponding panel for the current metric
all_rcs_data_original[metric][panel] = rcs_dict_original
# Ensure the dictionary has the metric as a key for modified data
if metric not in all_rcs_data_modified:
all_rcs_data_modified[metric] = {}
# Store the modified RCS data under the corresponding panel for the current metric
for channel in rcs_dict_original:
all_rcs_data_modified[metric][panel] = all_rcs_data_modified[
metric
].get(panel, {})
try:
updated_rcs_dict = modified_data[metric][panel][channel]
except:
updated_rcs_dict = {
"K": rcs_dict_original[channel]["K"],
"b": rcs_dict_original[channel]["b"],
"a": rcs_dict_original[channel]["a"],
"x0": rcs_dict_original[channel]["x0"],
}
all_rcs_data_modified[metric][panel][channel] = updated_rcs_dict
# Write the original RCS data
st.session_state["project_dct"]["response_curves"][
"original_metadata_file"
] = all_rcs_data_original
# Write the modified RCS data
st.session_state["project_dct"]["response_curves"][
"modified_metadata_file"
] = all_rcs_data_modified
# Function to generate scenario data and store it as dictionary
def generate_scenario_data():
# Retrieve the list of all metric names from the specified directory
metrics_list = get_metrics_names()
# Dictionary to store scenario data for all metrics and their respective panels
all_scenario_data_original = {}
all_scenario_data_modified = {}
# Iterate over each metric in the metrics list
for metric in metrics_list:
# Retrieve the list of panel names from the current metric's Excel file
panel_list = get_panels_names(metric)
# Check if scenario_data_modified exist
if (
st.session_state["project_dct"]["scenario_planner"][
"modified_metadata_file"
]
is not None
):
modified_data = st.session_state["project_dct"]["scenario_planner"][
"modified_metadata_file"
]
# Iterate over each panel in the panel list
for panel in panel_list:
# Initialize the original scenario data for the current panel and metric
rcs_dict_original, scenario = initialize_data(
panel=panel,
metrics=metric,
)
# Ensure the dictionary has the metric as a key for original data
if metric not in all_scenario_data_original:
all_scenario_data_original[metric] = {}
# Store the original scenario data under the corresponding panel for the current metric
all_scenario_data_original[metric][panel] = class_convert_to_dict(scenario)
# Ensure the dictionary has the metric as a key for modified data
if metric not in all_scenario_data_modified:
all_scenario_data_modified[metric] = {}
# Store the modified scenario data under the corresponding panel for the current metric
try:
all_scenario_data_modified[metric][panel] = modified_data[metric][panel]
except:
all_scenario_data_modified[metric][panel] = class_convert_to_dict(
scenario
)
# Write the original scenario data
st.session_state["project_dct"]["scenario_planner"][
"original_metadata_file"
] = all_scenario_data_original
# Write the modified scenario data
st.session_state["project_dct"]["scenario_planner"][
"modified_metadata_file"
] = all_scenario_data_modified
#############################################################################################################
|