Spaces:
Sleeping
Sleeping
File size: 61,987 Bytes
00b00eb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 |
import pandas as pd
import numpy as np
import pptx
from pptx import Presentation
from pptx.chart.data import CategoryChartData, ChartData
from pptx.enum.chart import XL_CHART_TYPE, XL_LEGEND_POSITION, XL_LABEL_POSITION
from pptx.enum.chart import XL_TICK_LABEL_POSITION
from pptx.util import Inches, Pt
import os
import pickle
from pathlib import Path
from sklearn.metrics import (
mean_absolute_error,
r2_score,
mean_absolute_percentage_error,
)
import streamlit as st
from collections import OrderedDict
from utilities import get_metrics_names, initialize_data, retrieve_pkl_object_without_warning
from io import BytesIO
from pptx.dml.color import RGBColor
from post_gres_cred import db_cred
schema=db_cred['schema']
from constants import (
TITLE_FONT_SIZE,
AXIS_LABEL_FONT_SIZE,
CHART_TITLE_FONT_SIZE,
AXIS_TITLE_FONT_SIZE,
DATA_LABEL_FONT_SIZE,
LEGEND_FONT_SIZE,
PIE_LEGEND_FONT_SIZE
)
def format_response_metric(target):
if target.startswith('response_metric_'):
target = target.replace('response_metric_', '')
target = target.replace("_", " ").title()
return target
def smape(actual, forecast):
# Symmetric Mape (SMAPE) eliminates shortcomings of MAPE :
## 1. MAPE becomes insanely high when actual is close to 0
## 2. MAPE is more favourable to underforecast than overforecast
return (1 / len(actual)) * np.sum(1 * np.abs(forecast - actual) / (np.abs(actual) + np.abs(forecast)))
def safe_num_to_per(num):
try:
return "{:.0%}".format(num)
except:
return num
# Function to convert numbers to abbreviated format
def convert_number_to_abbreviation(number):
try:
number = float(number)
if number >= 1000000:
return f'{number / 1000000:.1f} M'
elif number >= 1000:
return f'{number / 1000:.1f} K'
else:
return str(number)
except:
return number
def round_off(x, round_off_decimal=0):
# round off
try:
x = float(x)
if x < 1 and x > 0:
round_off_decimal = int(np.floor(np.abs(np.log10(x)))) + max(round_off_decimal, 1)
x = np.round(x, round_off_decimal)
elif x < 0 and x > -1:
round_off_decimal = int(np.floor(np.abs(np.log10(np.abs(x))))) + max(round_off_decimal, 1)
x = -np.round(x, round_off_decimal)
else:
x = np.round(x, round_off_decimal)
return x
except:
return x
def fill_table_placeholder(table_placeholder, slide, df, column_width=None, table_height=None):
cols = len(df.columns)
rows = len(df)
if table_height is None:
table_height = table_placeholder.height
x, y, cx, cy = table_placeholder.left, table_placeholder.top, table_placeholder.width, table_height
table = slide.shapes.add_table(rows + 1, cols, x, y, cx, cy).table
# Populate the table with data from the DataFrame
for row_idx, row in enumerate(df.values):
for col_idx, value in enumerate(row):
cell = table.cell(row_idx + 1, col_idx)
cell.text = str(value)
for col_idx, value in enumerate(df.columns):
cell = table.cell(0, col_idx)
cell.text = str(value)
if column_width is not None:
for col_idx, column_width in column_width.items():
table.columns[col_idx].width = Inches(column_width)
table_placeholder._element.getparent().remove(table_placeholder._element)
def bar_chart(chart_placeholder, slide, chart_data, titles={}, min_y=None, max_y=None, type='V', legend=True,
label_type=None, xaxis_pos=None):
x, y, cx, cy = chart_placeholder.left, chart_placeholder.top, chart_placeholder.width, chart_placeholder.height
if type == 'V':
graphic_frame = slide.shapes.add_chart(
XL_CHART_TYPE.COLUMN_CLUSTERED, x, y, cx, cy, chart_data
)
if type == 'H':
graphic_frame = slide.shapes.add_chart(
XL_CHART_TYPE.BAR_CLUSTERED, x, y, cx, cy, chart_data
)
chart = graphic_frame.chart
category_axis = chart.category_axis
value_axis = chart.value_axis
# Add chart title
if 'chart_title' in titles.keys():
chart.has_title = True
chart.chart_title.text_frame.text = titles['chart_title']
chart_title = chart.chart_title.text_frame.paragraphs[0].runs[0]
chart_title.font.size = Pt(CHART_TITLE_FONT_SIZE)
# Add axis titles
if 'x_axis' in titles.keys():
category_axis.has_title = True
category_axis.axis_title.text_frame.text = titles['x_axis']
category_title = category_axis.axis_title.text_frame.paragraphs[0].runs[0]
category_title.font.size = Pt(AXIS_TITLE_FONT_SIZE)
if 'y_axis' in titles.keys():
value_axis.has_title = True
value_axis.axis_title.text_frame.text = titles['y_axis']
value_title = value_axis.axis_title.text_frame.paragraphs[0].runs[0]
value_title.font.size = Pt(AXIS_TITLE_FONT_SIZE)
if xaxis_pos == 'low':
category_axis.tick_label_position = XL_TICK_LABEL_POSITION.LOW
# Customize the chart
if legend:
chart.has_legend = True
chart.legend.position = XL_LEGEND_POSITION.BOTTOM
chart.legend.font.size = Pt(LEGEND_FONT_SIZE)
chart.legend.include_in_layout = False
# Adjust font size for axis labels
category_axis.tick_labels.font.size = Pt(AXIS_LABEL_FONT_SIZE)
value_axis.tick_labels.font.size = Pt(AXIS_LABEL_FONT_SIZE)
if min_y is not None:
value_axis.minimum_scale = min_y # Adjust this value as needed
if max_y is not None:
value_axis.maximum_scale = max_y # Adjust this value as needed
plot = chart.plots[0]
plot.has_data_labels = True
data_labels = plot.data_labels
if label_type == 'per':
data_labels.number_format = '0"%"'
elif label_type == '$':
data_labels.number_format = '$[>=1000000]#,##0.0,,"M";$[>=1000]#,##0.0,"K";$#,##0'
elif label_type == '$1':
data_labels.number_format = '$[>=1000000]#,##0,,"M";$[>=1000]#,##0,"K";$#,##0'
elif label_type == 'M':
data_labels.number_format = '#0.0,,"M"'
elif label_type == 'M1':
data_labels.number_format = '#0.00,,"M"'
elif label_type == 'K':
data_labels.number_format = '#0.0,"K"'
data_labels.font.size = Pt(DATA_LABEL_FONT_SIZE)
chart_placeholder._element.getparent().remove(chart_placeholder._element)
def line_chart(chart_placeholder, slide, chart_data, titles={}, min_y=None, max_y=None):
# Add the chart to the slide
x, y, cx, cy = chart_placeholder.left, chart_placeholder.top, chart_placeholder.width, chart_placeholder.height
chart = slide.shapes.add_chart(
XL_CHART_TYPE.LINE, x, y, cx, cy, chart_data
).chart
chart.has_legend = True
chart.legend.position = XL_LEGEND_POSITION.BOTTOM
chart.legend.font.size = Pt(LEGEND_FONT_SIZE)
category_axis = chart.category_axis
value_axis = chart.value_axis
if min_y is not None:
value_axis.minimum_scale = min_y
if max_y is not None:
value_axis.maximum_scale = max_y
if min_y is not None and max_y is not None:
value_axis.major_unit = int((max_y - min_y) / 2)
if 'chart_title' in titles.keys():
chart.has_title = True
chart.chart_title.text_frame.text = titles['chart_title']
chart_title = chart.chart_title.text_frame.paragraphs[0].runs[0]
chart_title.font.size = Pt(CHART_TITLE_FONT_SIZE)
if 'x_axis' in titles.keys():
category_axis.has_title = True
category_axis.axis_title.text_frame.text = titles['x_axis']
category_title = category_axis.axis_title.text_frame.paragraphs[0].runs[0]
category_title.font.size = Pt(AXIS_TITLE_FONT_SIZE)
if 'y_axis' in titles.keys():
value_axis.has_title = True
value_axis.axis_title.text_frame.text = titles['y_axis']
value_title = value_axis.axis_title.text_frame.paragraphs[0].runs[0]
value_title.font.size = Pt(AXIS_TITLE_FONT_SIZE)
# Adjust font size for axis labels
category_axis.tick_labels.font.size = Pt(AXIS_LABEL_FONT_SIZE)
value_axis.tick_labels.font.size = Pt(AXIS_LABEL_FONT_SIZE)
plot = chart.plots[0]
series = plot.series[1]
line = series.format.line
line.color.rgb = RGBColor(141, 47, 0)
chart_placeholder._element.getparent().remove(chart_placeholder._element)
def pie_chart(chart_placeholder, slide, chart_data, title):
# Add the chart to the slide
x, y, cx, cy = chart_placeholder.left, chart_placeholder.top, chart_placeholder.width, chart_placeholder.height
chart = slide.shapes.add_chart(
XL_CHART_TYPE.PIE, x, y, cx, cy, chart_data
).chart
chart.has_legend = True
chart.legend.position = XL_LEGEND_POSITION.RIGHT
chart.legend.include_in_layout = False
chart.legend.font.size = Pt(PIE_LEGEND_FONT_SIZE)
chart.plots[0].has_data_labels = True
data_labels = chart.plots[0].data_labels
data_labels.number_format = '0%'
data_labels.position = XL_LABEL_POSITION.OUTSIDE_END
data_labels.font.size = Pt(DATA_LABEL_FONT_SIZE)
chart.has_title = True
chart.chart_title.text_frame.text = title
chart_title = chart.chart_title.text_frame.paragraphs[0].runs[0]
chart_title.font.size = Pt(CHART_TITLE_FONT_SIZE)
chart_placeholder._element.getparent().remove(chart_placeholder._element)
def title_and_table(slide, title, df, column_width=None, custom_table_height=False):
placeholders = slide.placeholders
ph_idx = [ph.placeholder_format.idx for ph in placeholders]
title_ph = slide.placeholders[ph_idx[0]]
title_ph.text = title
title_ph.text_frame.paragraphs[0].font.size = Pt(TITLE_FONT_SIZE)
table_placeholder = slide.placeholders[ph_idx[1]]
table_height = None
if custom_table_height:
if len(df) < 4:
table_height = int(np.ceil(table_placeholder.height / 2))
fill_table_placeholder(table_placeholder, slide, df, column_width, table_height)
# try:
# font_size = 18 # default for 3*3
# if cols < 3:
# row_diff = 3 - rows
# font_size = font_size + ((row_diff)*2) # 1 row less -> 2 pt font size increase & vice versa
# else:
# row_diff = 2 - rows
# font_size = font_size + ((row_diff)*2)
# for row in table.rows:
# for cell in row.cells:
# cell.text_frame.paragraphs[0].runs[0].font.size = Pt(font_size)
# except Exception as e :
# print("**"*30)
# print(e)
# else:
# except Exception as e:
# print('table', e)
return slide
def data_import(data, bin_dict):
import_df = pd.DataFrame(columns=['Category', 'Value'])
import_df.at[0, 'Category'] = 'Date Range'
date_start = data['date'].min().date()
date_end = data['date'].max().date()
import_df.at[0, 'Value'] = str(date_start) + ' - ' + str(date_end)
import_df.at[1, 'Category'] = 'Response Metrics'
import_df.at[1, 'Value'] = ', '.join(bin_dict['Response Metrics'])
import_df.at[2, 'Category'] = 'Media Variables'
import_df.at[2, 'Value'] = ', '.join(bin_dict['Media'])
import_df.at[3, 'Category'] = 'Spend Variables'
import_df.at[3, 'Value'] = ', '.join(bin_dict['Spends'])
if bin_dict['Exogenous'] != []:
import_df.at[4, 'Category'] = 'Exogenous Variables'
import_df.at[4, 'Value'] = ', '.join(bin_dict['Exogenous'])
return import_df
def channel_groups_df(channel_groups_dct={}, bin_dict={}):
df = pd.DataFrame(columns=['Channel', 'Media Variables', 'Spend Variables'])
i = 0
for channel, vars in channel_groups_dct.items():
media_vars = ", ".join(list(set(vars).intersection(set(bin_dict["Media"]))))
spend_vars = ", ".join(list(set(vars).intersection(set(bin_dict["Spends"]))))
df.at[i, "Channel"] = channel
df.at[i, 'Media Variables'] = media_vars
df.at[i, 'Spend Variables'] = spend_vars
i += 1
return df
def transformations(transform_dict):
transform_df = pd.DataFrame(columns=['Category', 'Transformation', 'Value'])
i = 0
for category in ['Media', 'Exogenous']:
transformations = f'transformation_{category}'
category_dict = transform_dict[category]
if transformations in category_dict.keys():
for transformation in category_dict[transformations]:
transform_df.at[i, 'Category'] = category
transform_df.at[i, 'Transformation'] = transformation
transform_df.at[i, 'Value'] = str(category_dict[transformation][0]) + ' - ' + str(
category_dict[transformation][1])
i += 1
return transform_df
def model_metrics(model_dict, is_panel):
metrics_df = pd.DataFrame(
columns=[
"Response Metric",
"Model",
"R2",
"ADJR2",
"Train MAPE",
"Test MAPE"
]
)
i = 0
for key in model_dict.keys():
target = key.split("__")[1]
metrics_df.at[i, "Response Metric"] = format_response_metric(target)
metrics_df.at[i, "Model"] = key.split("__")[0]
y = model_dict[key]["X_train_tuned"][target]
feature_set = model_dict[key]["feature_set"]
if is_panel:
random_df = get_random_effects(
media_data, panel_col, model_dict[key]["Model_object"]
)
pred = mdf_predict(
model_dict[key]["X_train_tuned"],
model_dict[key]["Model_object"],
random_df,
)["pred"]
else:
pred = model_dict[key]["Model_object"].predict(model_dict[key]["X_train_tuned"][feature_set])
ytest = model_dict[key]["X_test_tuned"][target]
if is_panel:
predtest = mdf_predict(
model_dict[key]["X_test_tuned"],
model_dict[key]["Model_object"],
random_df,
)["pred"]
else:
predtest = model_dict[key]["Model_object"].predict(model_dict[key]["X_test_tuned"][feature_set])
metrics_df.at[i, "R2"] = np.round(r2_score(y, pred), 2)
adjr2 = 1 - (1 - metrics_df.loc[i, "R2"]) * (
len(y) - 1
) / (len(y) - len(model_dict[key]["feature_set"]) - 1)
metrics_df.at[i, "ADJR2"] = np.round(adjr2, 2)
# y = np.where(np.abs(y) < 0.00001, 0.00001, y)
metrics_df.at[i, "Train MAPE"] = np.round(smape(y, pred), 2)
metrics_df.at[i, "Test MAPE"] = np.round(smape(ytest, predtest), 2)
i += 1
metrics_df = np.round(metrics_df, 2)
return metrics_df
def model_result(slide, model_key, model_dict, model_metrics_df, date_col):
placeholders = slide.placeholders
ph_idx = [ph.placeholder_format.idx for ph in placeholders]
title_ph = slide.placeholders[ph_idx[0]]
title_ph.text = model_key.split('__')[0]
title_ph.text_frame.paragraphs[0].font.size = Pt(TITLE_FONT_SIZE)
target = model_key.split('__')[1]
metrics_table_placeholder = slide.placeholders[ph_idx[1]]
metrics_df = model_metrics_df[model_metrics_df['Model'] == model_key.split('__')[0]].reset_index(drop=True)
# Accuracy = 1-mape
metrics_df['Accuracy'] = 100 * (1 - metrics_df['Train MAPE'])
metrics_df['Accuracy'] = metrics_df['Accuracy'].apply(lambda x: f'{np.round(x, 0)}%')
## Removing metrics as requested by Ioannis
metrics_df = metrics_df.drop(columns=['R2', 'ADJR2', 'Train MAPE', 'Test MAPE'])
fill_table_placeholder(metrics_table_placeholder, slide, metrics_df)
# coeff_table_placeholder = slide.placeholders[ph_idx[2]]
# coeff_df = pd.DataFrame(model_dict['Model_object'].params)
# coeff_df.reset_index(inplace=True)
# coeff_df.columns = ['Feature', 'Coefficent']
# fill_table_placeholder(coeff_table_placeholder, slide, coeff_df)
chart_placeholder = slide.placeholders[ph_idx[2]]
full_df = pd.concat([model_dict['X_train_tuned'], model_dict['X_test_tuned']])
full_df['Predicted'] = model_dict['Model_object'].predict(full_df[model_dict['feature_set']])
pred_df = full_df[[date_col, target, 'Predicted']]
pred_df.rename(columns={target: 'Actual'}, inplace=True)
# Create chart data
chart_data = CategoryChartData()
chart_data.categories = pred_df[date_col]
chart_data.add_series('Actual', pred_df['Actual'])
chart_data.add_series('Predicted', pred_df['Predicted'])
# Set range for y axis
min_y = np.floor(min(pred_df['Actual'].min(), pred_df['Predicted'].min()))
max_y = np.ceil(max(pred_df['Actual'].max(), pred_df['Predicted'].max()))
# Create the chart
line_chart(chart_placeholder=chart_placeholder,
slide=slide,
chart_data=chart_data,
titles={'chart_title': 'Actual VS Predicted',
'x_axis': 'Date',
'y_axis': target.title().replace('_', ' ')
},
min_y=min_y,
max_y=max_y
)
return slide
def metrics_contributions(slide, contributions_excels_dict, panel_col):
# Create data for metrics contributions
all_contribution_df = pd.DataFrame(columns=['Channel'])
target_sum_dict = {}
sort_support_dct = {}
for target in contributions_excels_dict.keys():
contribution_df = contributions_excels_dict[target]['CONTRIBUTION MMM'].copy()
if 'Date' in contribution_df.columns:
contribution_df.drop(columns=['Date'], inplace=True)
if panel_col in contribution_df.columns:
contribution_df.drop(columns=[panel_col], inplace=True)
contribution_df = pd.DataFrame(np.sum(contribution_df, axis=0)).reset_index()
contribution_df.columns = ['Channel', target]
target_sum = contribution_df[target].sum()
target_sum_dict[target] = target_sum
contribution_df[target] = 100 * contribution_df[target] / target_sum
all_contribution_df = pd.merge(all_contribution_df, contribution_df, on='Channel', how='outer')
sorted_target_sum_dict = sorted(target_sum_dict.items(), key=lambda kv: kv[1], reverse=True)
sorted_target_sum_keys = [kv[0] for kv in sorted_target_sum_dict]
if len([metric for metric in sorted_target_sum_keys if metric.lower() == 'revenue']) == 1:
rev_metric = [metric for metric in sorted_target_sum_keys if metric.lower() == 'revenue'][0]
sorted_target_sum_keys.remove(rev_metric)
sorted_target_sum_keys.append(rev_metric)
all_contribution_df = all_contribution_df[['Channel'] + sorted_target_sum_keys]
# for col in all_contribution_df.columns:
# all_contribution_df[col]=all_contribution_df[col].apply(lambda x: round_off(x,1))
# Sort Data by Average contribution of the channels keeping base first <Removed>
# all_contribution_df['avg'] = np.mean(all_contribution_df[list(contributions_excels_dict.keys())],axis=1)
# all_contribution_df['rank'] = all_contribution_df['avg'].rank(ascending=False)
# Sort data by contribution of bottom funnel metric
bottom_funnel_metric = sorted_target_sum_keys[-1]
all_contribution_df['rank'] = all_contribution_df[bottom_funnel_metric].rank(ascending=False)
all_contribution_df.loc[all_contribution_df[all_contribution_df['Channel'] == 'base'].index, 'rank'] = 0
all_contribution_df = all_contribution_df.sort_values(by='rank')
all_contribution_df.drop(columns=['rank'], inplace=True)
# Add title
placeholders = slide.placeholders
ph_idx = [ph.placeholder_format.idx for ph in placeholders]
title_ph = slide.placeholders[ph_idx[0]]
title_ph.text = "Response Metrics Contributions"
title_ph.text_frame.paragraphs[0].font.size = Pt(TITLE_FONT_SIZE)
for target in contributions_excels_dict.keys():
all_contribution_df[target] = all_contribution_df[target].astype(float)
# Create chart data
chart_data = CategoryChartData()
chart_data.categories = all_contribution_df['Channel']
for target in sorted_target_sum_keys:
chart_data.add_series(format_response_metric(target), all_contribution_df[target])
chart_placeholder = slide.placeholders[ph_idx[1]]
if isinstance(np.min(all_contribution_df.select_dtypes(exclude=['object', 'datetime'])), float):
# Add the chart to the slide
bar_chart(chart_placeholder=chart_placeholder,
slide=slide,
chart_data=chart_data,
titles={'chart_title': 'Response Metrics Contributions',
# 'x_axis':'Channels',
'y_axis': 'Contributions'},
min_y=np.floor(np.min(all_contribution_df.select_dtypes(exclude=['object', 'datetime']))),
max_y=np.ceil(np.max(all_contribution_df.select_dtypes(exclude=['object', 'datetime']))),
type='V',
label_type='per'
)
else:
bar_chart(chart_placeholder=chart_placeholder,
slide=slide,
chart_data=chart_data,
titles={'chart_title': 'Response Metrics Contributions',
# 'x_axis':'Channels',
'y_axis': 'Contributions'},
min_y=np.floor(np.min(all_contribution_df.select_dtypes(exclude=['object', 'datetime'])).values[0]),
max_y=np.ceil(np.max(all_contribution_df.select_dtypes(exclude=['object', 'datetime'])).values[0]),
type='V',
label_type='per'
)
return slide
def model_media_performance(slide, target, contributions_excels_dict, date_col='Date', is_panel=False,
panel_col='panel'):
# Add title
placeholders = slide.placeholders
ph_idx = [ph.placeholder_format.idx for ph in placeholders]
title_ph = slide.placeholders[ph_idx[0]]
title_ph.text = "Media Performance - " + target.title().replace("_", " ")
title_ph.text_frame.paragraphs[0].font.size = Pt(TITLE_FONT_SIZE)
# CONTRIBUTION CHART
# Create contribution data
contribution_df = contributions_excels_dict[target]['CONTRIBUTION MMM']
if panel_col in contribution_df.columns:
contribution_df.drop(columns=[panel_col], inplace=True)
# contribution_df.drop(columns=[date_col], inplace=True)
contribution_df = pd.DataFrame(np.sum(contribution_df, axis=0)).reset_index()
contribution_df.columns = ['Channel', format_response_metric(target)]
contribution_df['Channel'] = contribution_df['Channel'].apply(lambda x: x.title())
target_sum = contribution_df[format_response_metric(target)].sum()
contribution_df[format_response_metric(target)] = contribution_df[format_response_metric(target)] / target_sum
contribution_df.sort_values(by=['Channel'], ascending=False, inplace=True)
# for col in contribution_df.columns:
# contribution_df[col] = contribution_df[col].apply(lambda x : round_off(x))
# Create Chart Data
chart_data = ChartData()
chart_data.categories = contribution_df['Channel']
chart_data.add_series('Contribution', contribution_df[format_response_metric(target)])
chart_placeholder = slide.placeholders[ph_idx[2]]
pie_chart(chart_placeholder=chart_placeholder,
slide=slide,
chart_data=chart_data,
title='Contribution')
# SPENDS CHART
initialize_data(panel='aggregated', metrics=target)
scenario = st.session_state["scenario"]
spends_values = {
channel_name: round(
scenario.channels[channel_name].actual_total_spends
* scenario.channels[channel_name].conversion_rate,
1,
)
for channel_name in st.session_state["channels_list"]
}
spends_df = pd.DataFrame(columns=['Channel', 'Media Spend'])
spends_df['Channel'] = list(spends_values.keys())
spends_df['Media Spend'] = list(spends_values.values())
spends_sum = spends_df['Media Spend'].sum()
spends_df['Media Spend'] = spends_df['Media Spend'] / spends_sum
spends_df['Channel'] = spends_df['Channel'].apply(lambda x: x.title())
spends_df.sort_values(by='Channel', ascending=False, inplace=True)
# for col in spends_df.columns:
# spends_df[col] = spends_df[col].apply(lambda x : round_off(x))
# Create Chart Data
spends_chart_data = ChartData()
spends_chart_data = ChartData()
spends_chart_data.categories = spends_df['Channel']
spends_chart_data.add_series('Media Spend', spends_df['Media Spend'])
spends_chart_placeholder = slide.placeholders[ph_idx[1]]
pie_chart(chart_placeholder=spends_chart_placeholder,
slide=slide,
chart_data=spends_chart_data,
title='Media Spend')
# spends_values.append(0)
return contribution_df, spends_df
# def get_saved_scenarios_dict(project_path):
# # Path to the saved scenarios file
# saved_scenarios_dict_path = os.path.join(
# project_path, "saved_scenarios.pkl"
# )
#
# # Load existing scenarios if the file exists
# if os.path.exists(saved_scenarios_dict_path):
# with open(saved_scenarios_dict_path, "rb") as f:
# saved_scenarios_dict = pickle.load(f)
# else:
# saved_scenarios_dict = OrderedDict()
#
# return saved_scenarios_dict
def optimization_summary(slide, scenario, scenario_name):
placeholders = slide.placeholders
ph_idx = [ph.placeholder_format.idx for ph in placeholders]
title_ph = slide.placeholders[ph_idx[0]]
title_ph.text = 'Optimization Summary' # + ' (Scenario: ' + scenario_name + ')'
title_ph.text_frame.paragraphs[0].font.size = Pt(TITLE_FONT_SIZE)
multiplier = 1 / float(scenario['multiplier'])
# st.write(scenario['multiplier'], multiplier)
## Multiplier is an indicator of selected time fram
## Doesn't effect CPA
opt_on = scenario['optimization']
if opt_on.lower() == 'spends':
opt_on = 'Media Spend'
details_ph = slide.placeholders[ph_idx[3]]
details_ph.text = 'Scenario Name: ' + scenario_name + \
'\nResponse Metric: ' + str(scenario['metrics_selected']).replace("_", " ").title() + \
'\nOptimized on: ' + str(opt_on).replace("_", " ").title()
scenario_df = pd.DataFrame(columns=['Category', 'Actual', 'Simulated', 'Change'])
scenario_df.at[0, 'Category'] = 'Media Spend'
scenario_df.at[0, 'Actual'] = scenario['actual_total_spends'] * multiplier
scenario_df.at[0, 'Simulated'] = scenario['modified_total_spends'] * multiplier
scenario_df.at[0, 'Change'] = (scenario['modified_total_spends'] - scenario['actual_total_spends']) * multiplier
scenario_df.at[1, 'Category'] = scenario['metrics_selected'].replace("_", " ").title()
scenario_df.at[1, 'Actual'] = scenario['actual_total_sales'] * multiplier
scenario_df.at[1, 'Simulated'] = (scenario['modified_total_sales']) * multiplier
scenario_df.at[1, 'Change'] = (scenario['modified_total_sales'] - scenario['actual_total_sales']) * multiplier
scenario_df.at[2, 'Category'] = 'CPA'
actual_cpa = scenario['actual_total_spends'] / scenario['actual_total_sales']
modified_cpa = scenario['modified_total_spends'] / scenario['modified_total_sales']
scenario_df.at[2, 'Actual'] = actual_cpa
scenario_df.at[2, 'Simulated'] = modified_cpa
scenario_df.at[2, 'Change'] = modified_cpa - actual_cpa
scenario_df.at[3, 'Category'] = 'ROI'
act_roi = scenario['actual_total_sales'] / scenario['actual_total_spends']
opt_roi = scenario['modified_total_sales'] / scenario['modified_total_spends']
scenario_df.at[3, 'Actual'] = act_roi
scenario_df.at[3, 'Simulated'] = opt_roi
scenario_df.at[3, 'Change'] = opt_roi - act_roi
for col in scenario_df.columns:
scenario_df[col] = scenario_df[col].apply(lambda x: round_off(x, 1))
scenario_df[col] = scenario_df[col].apply(lambda x: convert_number_to_abbreviation(x))
table_placeholder = slide.placeholders[ph_idx[1]]
fill_table_placeholder(table_placeholder, slide, scenario_df)
channel_spends_df = pd.DataFrame(columns=['Channel', 'Actual Spends', 'Optimized Spends'])
for i, channel in enumerate(scenario['channels'].values()):
channel_spends_df.at[i, 'Channel'] = channel['name']
channel_conversion_rate = channel[
"conversion_rate"
]
channel_spends_df.at[i, 'Actual Spends'] = (
channel["actual_total_spends"]
* channel_conversion_rate
) * multiplier
channel_spends_df.at[i, 'Optimized Spends'] = (
channel["modified_total_spends"]
* channel_conversion_rate
) * multiplier
channel_spends_df['Actual Spends'] = channel_spends_df['Actual Spends'].astype('float')
channel_spends_df['Optimized Spends'] = channel_spends_df['Optimized Spends'].astype('float')
for col in channel_spends_df.columns:
channel_spends_df[col] = channel_spends_df[col].apply(lambda x: round_off(x, 0))
# Sort data on Actual Spends
channel_spends_df.sort_values(by='Actual Spends', inplace=True, ascending=False)
# Create chart data
chart_data = CategoryChartData()
chart_data.categories = channel_spends_df['Channel']
for col in ['Actual Spends', 'Optimized Spends']:
chart_data.add_series(col, channel_spends_df[col])
chart_placeholder = slide.placeholders[ph_idx[2]]
# Add the chart to the slide
if isinstance(np.max(channel_spends_df.select_dtypes(exclude=['object', 'datetime'])),float):
bar_chart(chart_placeholder=chart_placeholder,
slide=slide,
chart_data=chart_data,
titles={'chart_title': 'Channel Wise Spends',
# 'x_axis':'Channels',
'y_axis': 'Spends'},
# min_y=np.floor(np.min(channel_spends_df.select_dtypes(exclude=['object', 'datetime']))),
min_y=0,
max_y=np.ceil(np.max(channel_spends_df.select_dtypes(exclude=['object', 'datetime']))),
label_type='$'
)
else:
# Add the chart to the slide
bar_chart(chart_placeholder=chart_placeholder,
slide=slide,
chart_data=chart_data,
titles={'chart_title': 'Channel Wise Spends',
# 'x_axis':'Channels',
'y_axis': 'Spends'},
# min_y=np.floor(np.min(channel_spends_df.select_dtypes(exclude=['object', 'datetime']))),
min_y=0,
max_y=np.ceil(np.max(channel_spends_df.select_dtypes(exclude=['object', 'datetime'])).values[0]),
label_type='$'
)
def channel_wise_spends(slide, scenario):
placeholders = slide.placeholders
ph_idx = [ph.placeholder_format.idx for ph in placeholders]
title_ph = slide.placeholders[ph_idx[0]]
title_ph.text = 'Channel Spends and Impact'
title_ph.text_frame.paragraphs[0].font.size = Pt(TITLE_FONT_SIZE)
# print(scenario.keys())
multiplier = 1 / float(scenario['multiplier'])
channel_spends_df = pd.DataFrame(columns=['Channel', 'Actual Spends', 'Optimized Spends'])
for i, channel in enumerate(scenario['channels'].values()):
channel_spends_df.at[i, 'Channel'] = channel['name']
channel_conversion_rate = channel["conversion_rate"]
channel_spends_df.at[i, 'Actual Spends'] = (channel[
"actual_total_spends"] * channel_conversion_rate) * multiplier
channel_spends_df.at[i, 'Optimized Spends'] = (channel[
"modified_total_spends"] * channel_conversion_rate) * multiplier
channel_spends_df['Actual Spends'] = channel_spends_df['Actual Spends'].astype('float')
channel_spends_df['Optimized Spends'] = channel_spends_df['Optimized Spends'].astype('float')
actual_sum = channel_spends_df['Actual Spends'].sum()
opt_sum = channel_spends_df['Optimized Spends'].sum()
for col in channel_spends_df.columns:
channel_spends_df[col] = channel_spends_df[col].apply(lambda x: round_off(x, 0))
channel_spends_df['Actual Spends %'] = 100 * (channel_spends_df['Actual Spends'] / actual_sum)
channel_spends_df['Optimized Spends %'] = 100 * (channel_spends_df['Optimized Spends'] / opt_sum)
channel_spends_df['Actual Spends %'] = np.round(channel_spends_df['Actual Spends %'])
channel_spends_df['Optimized Spends %'] = np.round(channel_spends_df['Optimized Spends %'])
# Sort Data based on Actual Spends %
channel_spends_df.sort_values(by='Actual Spends %', inplace=True)
# Create chart data
chart_data = CategoryChartData()
chart_data.categories = channel_spends_df['Channel']
for col in ['Actual Spends %', 'Optimized Spends %']:
# for col in ['Actual Spends %']:
chart_data.add_series(col, channel_spends_df[col])
chart_placeholder = slide.placeholders[ph_idx[1]]
# Add the chart to the slide
if isinstance(np.max(channel_spends_df[['Actual Spends %', 'Optimized Spends %']]), float):
bar_chart(chart_placeholder=chart_placeholder,
slide=slide,
chart_data=chart_data,
titles={'chart_title': 'Spend Split %',
# 'x_axis':'Channels',
'y_axis': 'Spend %'},
min_y=0,
max_y=np.ceil(np.max(channel_spends_df[['Actual Spends %', 'Optimized Spends %']])),
type='H',
legend=True,
label_type='per',
xaxis_pos='low'
)
else:
bar_chart(chart_placeholder=chart_placeholder,
slide=slide,
chart_data=chart_data,
titles={'chart_title': 'Spend Split %',
# 'x_axis':'Channels',
'y_axis': 'Spend %'},
min_y=0,
max_y=np.ceil(np.max(channel_spends_df[['Actual Spends %', 'Optimized Spends %']]).values[0]),
type='H',
legend=True,
label_type='per',
xaxis_pos='low'
)
#
# # Create chart data
# chart_data_1 = CategoryChartData()
# chart_data_1.categories = channel_spends_df['Channel']
# # for col in ['Actual Spends %', 'Optimized Spends %']:
# for col in ['Optimized Spends %']:
# chart_data_1.add_series(col, channel_spends_df[col])
# chart_placeholder_1 = slide.placeholders[ph_idx[3]]
#
# # Add the chart to the slide
# bar_chart(chart_placeholder=chart_placeholder_1,
# slide=slide,
# chart_data=chart_data_1,
# titles={'chart_title': 'Optimized Spends Split %',
# # 'x_axis':'Channels',
# 'y_axis': 'Spends %'},
# min_y=0,
# max_y=np.ceil(np.max(channel_spends_df[['Actual Spends %', 'Optimized Spends %']])),
# type='H',
# legend=False,
# label_type='per'
# )
channel_spends_df['Delta %'] = 100 * (channel_spends_df['Optimized Spends'] - channel_spends_df['Actual Spends']) / \
channel_spends_df['Actual Spends']
channel_spends_df['Delta %'] = channel_spends_df['Delta %'].apply(lambda x: round_off(x, 0))
# Create chart data
delta_chart_data = CategoryChartData()
delta_chart_data.categories = channel_spends_df['Channel']
col = 'Delta %'
delta_chart_data.add_series(col, channel_spends_df[col])
delta_chart_placeholder = slide.placeholders[ph_idx[3]]
# Add the chart to the slide
if isinstance(np.min(channel_spends_df['Delta %']), float):
bar_chart(chart_placeholder=delta_chart_placeholder,
slide=slide,
chart_data=delta_chart_data,
titles={'chart_title': 'Spend Delta %',
'y_axis': 'Spend Delta %'},
min_y=np.floor(np.min(channel_spends_df['Delta %'])),
max_y=np.ceil(np.max(channel_spends_df['Delta %'])),
type='H',
legend=False,
label_type='per',
xaxis_pos='low'
)
else:
bar_chart(chart_placeholder=delta_chart_placeholder,
slide=slide,
chart_data=delta_chart_data,
titles={'chart_title': 'Spend Delta %',
'y_axis': 'Spend Delta %'},
min_y=np.floor(np.min(channel_spends_df['Delta %']).values[0]),
max_y=np.ceil(np.max(channel_spends_df['Delta %']).values[0]),
type='H',
legend=False,
label_type='per',
xaxis_pos='low'
)
# Incremental Impact
channel_inc_df = pd.DataFrame(columns=['Channel', 'Increment'])
for i, channel in enumerate(scenario['channels'].values()):
channel_inc_df.at[i, 'Channel'] = channel['name']
act_impact = channel['actual_total_sales']
opt_impact = channel['modified_total_sales']
impact = opt_impact - act_impact
impact = round_off(impact, 0)
impact = impact if abs(impact) > 0.0001 else 0
channel_inc_df.at[i, 'Increment'] = impact
channel_inc_df_1 = pd.merge(channel_spends_df, channel_inc_df, how='left', on='Channel')
# Create chart data
delta_chart_data = CategoryChartData()
delta_chart_data.categories = channel_inc_df_1['Channel']
col = 'Increment'
delta_chart_data.add_series(col, channel_inc_df_1[col])
delta_chart_placeholder = slide.placeholders[ph_idx[2]]
label_req = True
if min(np.abs(channel_inc_df_1[col])) > 100000: # 0.1M
label_type = 'M'
elif min(np.abs(channel_inc_df_1[col])) > 10000 and max(np.abs(channel_inc_df_1[col])) > 1000000:
label_type = 'M1'
elif min(np.abs(channel_inc_df_1[col])) > 100 and max(np.abs(channel_inc_df_1[col])) > 1000:
label_type = 'K'
else:
label_req = False
# Add the chart to the slide
if label_req:
bar_chart(chart_placeholder=delta_chart_placeholder,
slide=slide,
chart_data=delta_chart_data,
titles={'chart_title': 'Incremental Impact',
'y_axis': format_response_metric(scenario['metrics_selected'])},
# min_y=np.floor(np.min(channel_inc_df_1['Delta %'])),
# max_y=np.ceil(np.max(channel_inc_df_1['Delta %'])),
type='H',
label_type=label_type,
legend=False,
xaxis_pos='low'
)
else:
bar_chart(chart_placeholder=delta_chart_placeholder,
slide=slide,
chart_data=delta_chart_data,
titles={'chart_title': 'Increment',
'y_axis': scenario['metrics_selected']},
# min_y=np.floor(np.min(channel_inc_df_1['Delta %'])),
# max_y=np.ceil(np.max(channel_inc_df_1['Delta %'])),
type='H',
legend=False,
xaxis_pos='low'
)
def channel_wise_roi(slide, scenario):
channel_roi_mroi = scenario['channel_roi_mroi']
# Add title
placeholders = slide.placeholders
ph_idx = [ph.placeholder_format.idx for ph in placeholders]
title_ph = slide.placeholders[ph_idx[0]]
title_ph.text = 'Channel ROIs'
title_ph.text_frame.paragraphs[0].font.size = Pt(TITLE_FONT_SIZE)
channel_roi_df = pd.DataFrame(columns=['Channel', 'Actual ROI', 'Optimized ROI'])
for i, channel in enumerate(channel_roi_mroi.keys()):
channel_roi_df.at[i, 'Channel'] = channel
channel_roi_df.at[i, 'Actual ROI'] = channel_roi_mroi[channel]['actual_roi']
channel_roi_df.at[i, 'Optimized ROI'] = channel_roi_mroi[channel]['optimized_roi']
channel_roi_df['Actual ROI'] = channel_roi_df['Actual ROI'].astype('float')
channel_roi_df['Optimized ROI'] = channel_roi_df['Optimized ROI'].astype('float')
for col in channel_roi_df.columns:
channel_roi_df[col] = channel_roi_df[col].apply(lambda x: round_off(x, 2))
# Create chart data
chart_data = CategoryChartData()
chart_data.categories = channel_roi_df['Channel']
for col in ['Actual ROI', 'Optimized ROI']:
chart_data.add_series(col, channel_roi_df[col])
chart_placeholder = slide.placeholders[ph_idx[1]]
# Add the chart to the slide
if isinstance(channel_roi_df.select_dtypes(exclude=['object', 'datetime']), float):
bar_chart(chart_placeholder=chart_placeholder,
slide=slide,
chart_data=chart_data,
titles={'chart_title': 'Channel Wise ROI',
# 'x_axis':'Channels',
'y_axis': 'ROI'},
# min_y=np.floor(np.min(channel_spends_df.select_dtypes(exclude=['object', 'datetime']))),
min_y=0,
max_y=np.max(channel_roi_df.select_dtypes(exclude=['object', 'datetime']))
)
else:
bar_chart(chart_placeholder=chart_placeholder,
slide=slide,
chart_data=chart_data,
titles={'chart_title': 'Channel Wise ROI',
# 'x_axis':'Channels',
'y_axis': 'ROI'},
# min_y=np.floor(np.min(channel_spends_df.select_dtypes(exclude=['object', 'datetime']))),
min_y=0,
max_y=np.max(channel_roi_df.select_dtypes(exclude=['object', 'datetime'])).values[0]
)
# act_roi = scenario['actual_total_sales']/scenario['actual_total_spends']
# opt_roi = scenario['modified_total_sales']/scenario['modified_total_spends']
#
# act_roi_ph = slide.placeholders[ph_idx[2]]
# act_roi_ph.text = 'Actual ROI: ' + str(round_off(act_roi,2))
# opt_roi_ph = slide.placeholders[ph_idx[3]]
# opt_roi_ph.text = 'Optimized ROI: ' + str(round_off(opt_roi, 2))
## Removing mroi chart as per Ioannis' feedback
# channel_mroi_df = pd.DataFrame(columns=['Channel', 'Actual mROI', 'Optimized mROI'])
# for i, channel in enumerate(channel_roi_mroi.keys()):
# channel_mroi_df.at[i, 'Channel'] = channel
# channel_mroi_df.at[i, 'Actual mROI'] = channel_roi_mroi[channel]['actual_mroi']
# channel_mroi_df.at[i, 'Optimized mROI'] = channel_roi_mroi[channel]['optimized_mroi']
# channel_mroi_df['Actual mROI']=channel_mroi_df['Actual mROI'].astype('float')
# channel_mroi_df['Optimized mROI']=channel_mroi_df['Optimized mROI'].astype('float')
#
# for col in channel_mroi_df.columns:
# channel_mroi_df[col]=channel_mroi_df[col].apply(lambda x: round_off(x))
#
# # Create chart data
# mroi_chart_data = CategoryChartData()
# mroi_chart_data.categories = channel_mroi_df['Channel']
# for col in ['Actual mROI', 'Optimized mROI']:
# mroi_chart_data.add_series(col, channel_mroi_df[col])
#
# mroi_chart_placeholder=slide.placeholders[ph_idx[2]]
#
# # Add the chart to the slide
# bar_chart(chart_placeholder=mroi_chart_placeholder,
# slide=slide,
# chart_data=mroi_chart_data,
# titles={'chart_title':'Channel Wise mROI',
# # 'x_axis':'Channels',
# 'y_axis':'mROI'},
# # min_y=np.floor(np.min(channel_mroi_df.select_dtypes(exclude=['object', 'datetime']))),
# min_y=0,
# max_y=np.ceil(np.max(channel_mroi_df.select_dtypes(exclude=['object', 'datetime'])))
# )
def effictiveness_efficiency(slide, final_data, bin_dct, scenario):
# Add title
placeholders = slide.placeholders
ph_idx = [ph.placeholder_format.idx for ph in placeholders]
title_ph = slide.placeholders[ph_idx[0]]
title_ph.text = 'Effectiveness and Efficiency'
title_ph.text_frame.paragraphs[0].font.size = Pt(TITLE_FONT_SIZE)
response_metrics = bin_dct['Response Metrics']
kpi_df = final_data[response_metrics].sum(axis=0).reset_index()
kpi_df.columns = ['Response Metric', 'Effectiveness']
kpi_df['Efficiency'] = kpi_df['Effectiveness'] / scenario['modified_total_spends']
kpi_df['Efficiency'] = kpi_df['Efficiency'].apply(lambda x: round_off(x, 1))
kpi_df.sort_values(by='Effectiveness', inplace=True)
kpi_df['Response Metric'] = kpi_df['Response Metric'].apply(lambda x: format_response_metric(x))
# Create chart data for effectiveness
chart_data = CategoryChartData()
chart_data.categories = kpi_df['Response Metric']
chart_data.add_series('Effectiveness', kpi_df['Effectiveness'])
chart_placeholder = slide.placeholders[ph_idx[1]]
# Add the chart to the slide
bar_chart(chart_placeholder=chart_placeholder,
slide=slide,
chart_data=chart_data,
titles={'chart_title': 'Effectiveness',
# 'x_axis':'Channels',
# 'y_axis': 'ROI'
},
# min_y=np.floor(np.min(channel_spends_df.select_dtypes(exclude=['object', 'datetime']))),
min_y=0,
# max_y=np.max(channel_roi_df.select_dtypes(exclude=['object', 'datetime'])),
type='H',
label_type='M'
)
# Create chart data for efficiency
chart_data_1 = CategoryChartData()
chart_data_1.categories = kpi_df['Response Metric']
chart_data_1.add_series('Efficiency', kpi_df['Efficiency'])
chart_placeholder_1 = slide.placeholders[ph_idx[2]]
# Add the chart to the slide
bar_chart(chart_placeholder=chart_placeholder_1,
slide=slide,
chart_data=chart_data_1,
titles={'chart_title': 'Efficiency',
# 'x_axis':'Channels',
# 'y_axis': 'ROI'
},
# min_y=np.floor(np.min(channel_spends_df.select_dtypes(exclude=['object', 'datetime']))),
min_y=0,
# max_y=np.max(channel_roi_df.select_dtypes(exclude=['object', 'datetime'])),
type='H'
)
definition_ph_1 = slide.placeholders[ph_idx[3]]
definition_ph_1.text = 'Effectiveness is measured as the total sum of the Response Metric'
definition_ph_2 = slide.placeholders[ph_idx[4]]
definition_ph_2.text = 'Efficiency is measured as the ratio of sum of the Response Metric and sum of Media Spend'
def load_pickle(path):
with open(path, "rb") as f:
file_data = pickle.load(f)
return file_data
def read_all_files():
files=[]
# Read data and bin dictionary
if st.session_state["project_dct"]["data_import"]["imputed_tool_df"] is not None:
final_df_loaded = st.session_state["project_dct"]["data_import"]["imputed_tool_df"].copy()
bin_dict_loaded = st.session_state["project_dct"]["data_import"]["category_dict"].copy()
files.append(final_df_loaded)
files.append(bin_dict_loaded)
if "group_dict" in st.session_state["project_dct"]["data_import"].keys():
channels = st.session_state["project_dct"]["data_import"]["group_dict"]
files.append(channels)
if st.session_state["project_dct"]["transformations"]["final_df"] is not None:
transform_dict = st.session_state["project_dct"]["transformations"]
files.append(transform_dict)
if retrieve_pkl_object_without_warning(st.session_state['project_number'], "Model_Tuning", "tuned_model", schema) is not None:
tuned_model_dict = retrieve_pkl_object_without_warning(st.session_state['project_number'], "Model_Tuning",
"tuned_model", schema) # db
files.append(tuned_model_dict)
else:
files.append(None)
else:
files.append(None)
if len(list(st.session_state["project_dct"]["current_media_performance"]["model_outputs"].keys()))>0: # check if there are model outputs for at least one metric
metrics_list = list(st.session_state["project_dct"]["current_media_performance"]["model_outputs"].keys())
contributions_excels_dict = {}
for metrics in metrics_list:
# raw_df = st.session_state["project_dct"]["current_media_performance"]["model_outputs"][metrics]["raw_data"]
# spend_df = st.session_state["project_dct"]["current_media_performance"]["model_outputs"][metrics]["spends_data"]
contribution_df = st.session_state["project_dct"]["current_media_performance"]["model_outputs"][metrics]["contribution_data"]
contributions_excels_dict[metrics] = {'CONTRIBUTION MMM':contribution_df}
files.append(contributions_excels_dict)
# Get Saved Scenarios
if len(list(st.session_state["project_dct"]["saved_scenarios"]["saved_scenarios_dict"].keys()))>0:
files.append(st.session_state["project_dct"]["saved_scenarios"]["saved_scenarios_dict"])
# saved_scenarios_loaded = get_saved_scenarios_dict(project_path)
return files
'''
Template Layout
0 : Title
1 : Data Details Section {no changes required}
2 : Data Import
3 : Data Import - Channel Groups
4 : Model Results {Duplicate for each model}
5 : Metrics Contribution
6 : Media performance {Duplicate for each model}
7 : Media performance Tabular View {Duplicate for each model}
8 : Optimization Section {no changes}
9 : Optimization Summary {Duplicate for each section}
10 : Channel Spends {Duplicate for each model}
11 : Channel Wise ROI {Duplicate for each model}
12 : Efficiency & Efficacy
13 : Appendix
14 : Transformations
15 : Model Summary
16 : Thank You Slide
'''
def create_ppt(project_name, username, panel_col):
# Read saved files
files = read_all_files()
transform_dict, tuned_model_dict, contributions_excels_dict, saved_scenarios_loaded = None, None, None, None
if len(files)>0:
# saved_data = files[0]
data = files[0]
bin_dict = files[1]
channel_groups_dct = files[2]
try:
transform_dict = files[3]
tuned_model_dict = files[4]
contributions_excels_dict = files[5]
saved_scenarios_loaded = files[6]
except Exception as e:
print(e)
else:
return False
is_panel = True if data[panel_col].nunique()>1 else False
template_path = 'ppt/template.pptx'
# ppt_path = os.path.join('ProjectSummary.pptx')
prs = Presentation(template_path)
num_slides = len(prs.slides)
slides = prs.slides
# Title Slide
title_slide_layout = slides[0].slide_layout
title_slide = prs.slides.add_slide(title_slide_layout)
# Add title & project name
placeholders = title_slide.placeholders
ph_idx = [ph.placeholder_format.idx for ph in placeholders]
title_ph = title_slide.placeholders[ph_idx[0]]
title_ph.text = 'Media Mix Optimization Summary'
txt_ph = title_slide.placeholders[ph_idx[1]]
txt_ph.text = 'Project Name: ' + project_name + '\nCreated By: ' + username
# Model Details Section
model_section_slide_layout = slides[1].slide_layout
model_section_slide = prs.slides.add_slide(model_section_slide_layout)
## Add title
placeholders = model_section_slide.placeholders
ph_idx = [ph.placeholder_format.idx for ph in placeholders]
title_ph = model_section_slide.placeholders[ph_idx[0]]
title_ph.text = 'Model Details'
section_ph = model_section_slide.placeholders[ph_idx[1]]
section_ph.text = 'Section 1'
# Data Import
data_import_slide_layout = slides[2].slide_layout
data_import_slide = prs.slides.add_slide(data_import_slide_layout)
data_import_slide = title_and_table(slide=data_import_slide,
title='Data Import',
df=data_import(data, bin_dict),
column_width={0: 2, 1: 7}
)
# Channel Groups
channel_group_slide_layout = slides[3].slide_layout
channel_group_slide = prs.slides.add_slide(channel_group_slide_layout)
channel_group_slide = title_and_table(slide=channel_group_slide,
title='Channels - Media and Spend',
df=channel_groups_df(channel_groups_dct, bin_dict),
column_width={0: 2, 1: 5, 2: 2}
)
if tuned_model_dict is not None:
model_metrics_df = model_metrics(tuned_model_dict, False)
# Model Results
for model_key, model_dict in tuned_model_dict.items():
model_result_slide_layout = slides[4].slide_layout
model_result_slide = prs.slides.add_slide(model_result_slide_layout)
model_result_slide = model_result(slide=model_result_slide,
model_key=model_key,
model_dict=model_dict,
model_metrics_df=model_metrics_df,
date_col='date')
if contributions_excels_dict is not None:
# Metrics Contributions
metrics_contributions_slide_layout = slides[5].slide_layout
metrics_contributions_slide = prs.slides.add_slide(metrics_contributions_slide_layout)
metrics_contributions_slide = metrics_contributions(slide=metrics_contributions_slide,
contributions_excels_dict=contributions_excels_dict,
panel_col=panel_col
)
# Media Performance
for target in contributions_excels_dict.keys():
# Chart
model_media_perf_slide_layout = slides[6].slide_layout
model_media_perf_slide = prs.slides.add_slide(model_media_perf_slide_layout)
contribution_df, spends_df = model_media_performance(slide=model_media_perf_slide,
target=target,
contributions_excels_dict=contributions_excels_dict
)
# Tabular View
contri_spends_df = pd.merge(spends_df, contribution_df, on='Channel', how='outer')
contri_spends_df.fillna(0, inplace=True)
for col in [c for c in contri_spends_df.columns if c != 'Channel']:
contri_spends_df[col] = contri_spends_df[col].apply(lambda x: safe_num_to_per(x))
media_performance_table_slide_layout = slides[7].slide_layout
media_performance_table_slide = prs.slides.add_slide(media_performance_table_slide_layout)
media_performance_table_slide = title_and_table(slide=media_performance_table_slide,
title='Media and Spends Channels Tabular View',
df=contri_spends_df,
# column_width={0:2, 1:5, 2:2}
)
if saved_scenarios_loaded is not None:
# Optimization Details
opt_section_slide_layout = slides[8].slide_layout
opt_section_slide = prs.slides.add_slide(opt_section_slide_layout)
## Add title
placeholders = opt_section_slide.placeholders
ph_idx = [ph.placeholder_format.idx for ph in placeholders]
title_ph = opt_section_slide.placeholders[ph_idx[0]]
title_ph.text = 'Optimizations Details'
section_ph = opt_section_slide.placeholders[ph_idx[1]]
section_ph.text = 'Section 2'
# Optimization
for scenario_name, scenario in saved_scenarios_loaded.items():
opt_summary_slide_layout = slides[9].slide_layout
opt_summary_slide = prs.slides.add_slide(opt_summary_slide_layout)
optimization_summary(opt_summary_slide, scenario, scenario_name)
channel_spends_slide_layout = slides[10].slide_layout
channel_spends_slide = prs.slides.add_slide(channel_spends_slide_layout)
channel_wise_spends(channel_spends_slide, scenario)
channel_roi_slide_layout = slides[11].slide_layout
channel_roi_slide = prs.slides.add_slide(channel_roi_slide_layout)
channel_wise_roi(channel_roi_slide, scenario)
effictiveness_efficiency_slide_layout = slides[12].slide_layout
effictiveness_efficiency_slide = prs.slides.add_slide(effictiveness_efficiency_slide_layout)
effictiveness_efficiency(effictiveness_efficiency_slide,
data,
bin_dict,
scenario)
# Appendix Section
appendix_section_slide_layout = slides[13].slide_layout
appendix_section_slide = prs.slides.add_slide(appendix_section_slide_layout)
if tuned_model_dict is not None:
## Add title
placeholders = appendix_section_slide.placeholders
ph_idx = [ph.placeholder_format.idx for ph in placeholders]
title_ph = appendix_section_slide.placeholders[ph_idx[0]]
title_ph.text = 'Appendix'
section_ph = appendix_section_slide.placeholders[ph_idx[1]]
section_ph.text = 'Section 3'
# Add transformations
# if transform_dict is not None:
# # Transformations
# transformation_slide_layout = slides[14].slide_layout
# transformation_slide = prs.slides.add_slide(transformation_slide_layout)
# transformation_slide = title_and_table(slide=transformation_slide,
# title='Transformations',
# df=transformations(transform_dict),
# custom_table_height=True
# )
# Add model summary
# Model Summary
model_metrics_df = model_metrics(tuned_model_dict, False)
model_summary_slide_layout = slides[15].slide_layout
model_summary_slide = prs.slides.add_slide(model_summary_slide_layout)
model_summary_slide = title_and_table(slide=model_summary_slide,
title='Model Summary',
df=model_metrics_df,
custom_table_height=True
)
# Last Slide
last_slide_layout = slides[num_slides - 1].slide_layout
last_slide = prs.slides.add_slide(last_slide_layout)
# Add title
placeholders = last_slide.placeholders
ph_idx = [ph.placeholder_format.idx for ph in placeholders]
title_ph = last_slide.placeholders[ph_idx[0]]
title_ph.text = 'Thank You'
# Remove template slides
xml_slides = prs.slides._sldIdLst
slides = list(xml_slides)
for index in range(num_slides):
xml_slides.remove(slides[index])
# prs.save(ppt_path)
# save the output into binary form
binary_output = BytesIO()
prs.save(binary_output)
return binary_output |