Spaces:
Sleeping
Sleeping
File size: 112,145 Bytes
00b00eb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 |
# Importing necessary libraries
import streamlit as st
st.set_page_config(
page_title="Scenario Planner",
page_icon="⚖️",
layout="wide",
initial_sidebar_state="collapsed",
)
# Disable +/- for number input
st.markdown(
"""
<style>
button.step-up {display: none;}
button.step-down {display: none;}
div[data-baseweb] {border-radius: 4px;}
</style>""",
unsafe_allow_html=True,
)
import re
import sys
import copy
import pickle
import traceback
import numpy as np
import pandas as pd
from scenario import numerize
import plotly.graph_objects as go
from post_gres_cred import db_cred
from scipy.optimize import minimize
from log_application import log_message
from utilities import project_selection, update_db, set_header, load_local_css
from utilities import (
get_panels_names,
get_metrics_names,
name_formating,
load_rcs_metadata_files,
load_scenario_metadata_files,
generate_rcs_data,
generate_scenario_data,
)
from constants import (
xtol_tolerance_per,
mroi_threshold,
word_length_limit_lower,
word_length_limit_upper,
)
schema = db_cred["schema"]
load_local_css("styles.css")
set_header()
# Initialize project name session state
if "project_name" not in st.session_state:
st.session_state["project_name"] = None
# Fetch project dictionary
if "project_dct" not in st.session_state:
project_selection()
st.stop()
# Display Username and Project Name
if "username" in st.session_state and st.session_state["username"] is not None:
cols1 = st.columns([2, 1])
with cols1[0]:
st.markdown(f"**Welcome {st.session_state['username']}**")
with cols1[1]:
st.markdown(f"**Current Project: {st.session_state['project_name']}**")
# Initialize ROI threshold
if "roi_threshold" not in st.session_state:
st.session_state.roi_threshold = 1
# Initialize message display holder
if "message_display" not in st.session_state:
st.session_state.message_display = {"type": "success", "message": None, "icon": ""}
# Function to reset modified_scenario_data
def reset_scenario(metrics_selected=None, panel_selected=None):
# Clear message_display
st.session_state.message_display = {"type": "success", "message": None, "icon": ""}
# Use default values from session state if not provided
if metrics_selected is None:
metrics_selected = st.session_state["response_metrics_selectbox_sp"]
if panel_selected is None:
panel_selected = st.session_state["panel_selected_selectbox_sp"]
# Load original scenario data
original_data = st.session_state["project_dct"]["scenario_planner"][
"original_metadata_file"
]
original_scenario_data = original_data[metrics_selected][panel_selected]
# Load modified scenario data
data = st.session_state["project_dct"]["scenario_planner"]["modified_metadata_file"]
# Update the specific section with the original scenario data
data[metrics_selected][panel_selected] = copy.deepcopy(original_scenario_data)
st.session_state["project_dct"]["scenario_planner"]["modified_metadata_file"] = data
# Function to build s curve
def s_curve(x, power, K, b, a, x0):
return K / (1 + b * np.exp(-a * ((x / 10**power) - x0)))
# Function to retrieve S-curve parameters for a given metric, panel, and channel
def get_s_curve_params(
metrics_selected,
panel_selected,
channel_selected,
original_rcs_data,
modified_rcs_data,
):
# Retrieve 'power' parameter from the original data for the specific metric, panel, and channel
power = original_rcs_data[metrics_selected][panel_selected][channel_selected][
"power"
]
# Get the S-curve parameters from the modified data for the same metric, panel, and channel
s_curve_param = modified_rcs_data[metrics_selected][panel_selected][
channel_selected
]
# Load modified scenario metadata
data = st.session_state["project_dct"]["scenario_planner"]["modified_metadata_file"]
# Update modified S-curve parameters
data[metrics_selected][panel_selected]["channels"][channel_selected][
"response_curve_params"
] = s_curve_param
# Update modified scenario metadata
st.session_state["project_dct"]["scenario_planner"]["modified_metadata_file"] = data
# Update the 'power' parameter in the modified S-curve parameters with the original 'power' value
s_curve_param["power"] = power
# Return the updated S-curve parameters
return s_curve_param
# Function to calculate total contribution
def get_total_contribution(
spends, channels, s_curve_params, channels_proportion, modified_scenario_data
):
total_contribution = 0
for i in range(len(channels)):
channel_name = channels[i]
channel_s_curve_params = s_curve_params[channel_name]
spend_proportion = spends[i] * channels_proportion[channel_name]
total_contribution += sum(
s_curve(
spend_proportion,
channel_s_curve_params["power"],
channel_s_curve_params["K"],
channel_s_curve_params["b"],
channel_s_curve_params["a"],
channel_s_curve_params["x0"],
)
) + sum(
modified_scenario_data["channels"][channel_name]["correction"]
) # correction for s-curve
return total_contribution + sum(modified_scenario_data["constant"])
# Function to calculate total spends
def get_total_spends(spends, channels_conversion_ratio):
return np.sum(spends * np.array(list(channels_conversion_ratio.values())))
# Function to optimizes spends for all channels given bounds and a total spend target
def optimizer(
optimization_goal,
s_curve_params,
channels_spends,
channels_proportion,
channels_conversion_ratio,
total_target,
bounds_dict,
modified_scenario_data,
):
# Extract channel names and corresponding actual spends
channels = list(channels_spends.keys())
actual_spends = np.array(list(channels_spends.values()))
num_channels = len(actual_spends)
# Define the objective function based on the optimization goal
def objective_fun(spends):
if optimization_goal == "Spend":
# Minimize negative total contribution to maximize the total contribution
return -get_total_contribution(
spends,
channels,
s_curve_params,
channels_proportion,
modified_scenario_data,
)
else:
# Minimize total spends
return get_total_spends(spends, channels_conversion_ratio)
def constraint_fun(spends):
if optimization_goal == "Spend":
# Ensure the total spends equals the total spend target
return get_total_spends(spends, channels_conversion_ratio)
else:
# Ensure the total contribution equals the total contribution target
return get_total_contribution(
spends,
channels,
s_curve_params,
channels_proportion,
modified_scenario_data,
)
# Equality constraint
constraints = {
"type": "eq",
"fun": lambda spends: constraint_fun(spends) - total_target,
} # Sum of all channel spends/metrics should equal the total spend/metrics target
# Bounds for each channel's spend based
bounds = [
(
actual_spends[i] * (1 + bounds_dict[channels[i]][0] / 100),
actual_spends[i] * (1 + bounds_dict[channels[i]][1] / 100),
)
for i in range(num_channels)
]
# Initial guess for the optimization
initial_guess = np.array(actual_spends)
# Calculate xtol as n% of the minimum of spends
xtol = max(10, (xtol_tolerance_per / 100) * np.min(actual_spends))
# Perform the optimization using 'trust-constr' method
result = minimize(
objective_fun,
initial_guess,
method="trust-constr",
constraints=constraints,
bounds=bounds,
options={
"disp": True, # Display the optimization process
"xtol": xtol, # Dynamic step size tolerance
"maxiter": 1e5, # Maximum number of iterations
},
)
# Extract the optimized spends from the result
optimized_spends_array = result.x
# Convert optimized spends back to a dictionary with channel names
optimized_spends = {
channels[i]: max(0, optimized_spends_array[i]) for i in range(num_channels)
}
return optimized_spends, result.success
# Function to calculate achievable targets at lower and upper spend bounds
@st.cache_data(show_spinner=False)
def max_target_achievable(
channels_spends,
s_curve_params,
channels_proportion,
modified_scenario_data,
bounds_dict,
):
# Extract channel names and corresponding actual spends
channels = list(channels_spends.keys())
actual_spends = np.array(list(channels_spends.values()))
num_channels = len(actual_spends)
# Bounds for each channel's spend
lower_spends, upper_spends = [], []
for i in range(num_channels):
lower_spends.append(actual_spends[i] * (1 + bounds_dict[channels[i]][0] / 100))
upper_spends.append(actual_spends[i] * (1 + bounds_dict[channels[i]][1] / 100))
# Calculate achievable targets at lower and upper spend bounds
lower_achievable_target = get_total_contribution(
lower_spends,
channels,
s_curve_params,
channels_proportion,
modified_scenario_data,
)
upper_achievable_target = get_total_contribution(
upper_spends,
channels,
s_curve_params,
channels_proportion,
modified_scenario_data,
)
# Return achievable targets with ±0.1% safety margin
return max(0, 1.001 * lower_achievable_target), 0.999 * upper_achievable_target
# Function to check if number is in valid format
def is_valid_number_format(number_str):
# Check for None
if number_str is None:
# Store the message details in session state for invalid input
st.session_state.message_display = {
"type": "warning",
"message": "Invalid input: Please enter a valid number.",
"icon": "⚠️",
}
return False
# Define the valid suffixes
valid_suffixes = {"K", "M", "B", "T"}
# Check for negative numbers
if number_str[0] == "-":
# Store the message details in session state for invalid input
st.session_state.message_display = {
"type": "warning",
"message": "Invalid input: Please enter a valid number.",
"icon": "⚠️",
}
return False
# Check if the string ends with a digit
if number_str[-1].isdigit():
try:
# Attempt to convert the entire string to float
number = float(number_str)
# Ensure the number is non-negative
if number >= 0:
return True
else:
# Store the message details in session state for invalid input
st.session_state.message_display = {
"type": "warning",
"message": "Invalid input: Please enter a valid number.",
"icon": "⚠️",
}
return False
except ValueError:
# Store the message details in session state for invalid input
st.session_state.message_display = {
"type": "warning",
"message": "Invalid input: Please enter a valid number.",
"icon": "⚠️",
}
return False
# Check if the string ends with a valid suffix
suffix = number_str[-1].upper()
if suffix in valid_suffixes:
num_part = number_str[:-1] # Extract the numerical part
try:
# Attempt to convert the numerical part to float
number = float(num_part)
# Ensure the number part is non-negative
if number >= 0:
return True
else:
# Store the message details in session state for invalid input
st.session_state.message_display = {
"type": "warning",
"message": "Invalid input: Please enter a valid number.",
"icon": "⚠️",
}
return False
except ValueError:
# Store the message details in session state for invalid input
st.session_state.message_display = {
"type": "warning",
"message": "Invalid input: Please enter a valid number.",
"icon": "⚠️",
}
return False
# If neither condition is met, return False
st.session_state.message_display = {
"type": "warning",
"message": "Invalid input: Please enter a valid number.",
"icon": "⚠️",
}
return False
# Function to converts a string with number suffixes (K, M, B, T) to a float
def convert_to_float(number_str):
# Dictionary mapping suffixes to their multipliers
multipliers = {
"K": 1e3, # Thousand
"M": 1e6, # Million
"B": 1e9, # Billion
"T": 1e12, # Trillion
}
# If there's no suffix, directly convert to float
if number_str[-1].isdigit():
return float(number_str)
# Extract the suffix (last character) and the numerical part
suffix = number_str[-1].upper()
num_part = number_str[:-1]
# Convert the numerical part to float and multiply by the corresponding multiplier
return float(num_part) * multipliers[suffix]
# Function to update absolute_channel_spends change
def absolute_channel_spends_change(
channel_key, channel_spends_actual, channel, metrics_selected, panel_selected
):
# Do not update if the number is in an invalid format
if not is_valid_number_format(st.session_state[f"{channel_key}_abs_spends_key"]):
return
# Get updated absolute spends from session state
new_absolute_spends = (
convert_to_float(st.session_state[f"{channel_key}_abs_spends_key"])
* st.session_state["multiplier"]
)
# Load modified scenario data
data = st.session_state["project_dct"]["scenario_planner"]["modified_metadata_file"]
# Total channel spends
total_channel_spends = 0
for current_channel in list(
data[metrics_selected][panel_selected]["channels"].keys()
):
# Channel key
channel_key = f"{metrics_selected}_{panel_selected}_{current_channel}"
total_channel_spends += (
convert_to_float(st.session_state[f"{channel_key}_abs_spends_key"])
* st.session_state["multiplier"]
)
# Check if total channel spends are within the allowed range (±50% of the original total spends)
if (
total_channel_spends
< 1.5 * data[metrics_selected][panel_selected]["actual_total_spends"]
and total_channel_spends
> 0.5 * data[metrics_selected][panel_selected]["actual_total_spends"]
):
# Update the modified_total_spends for the specified channel
data[metrics_selected][panel_selected]["channels"][channel][
"modified_total_spends"
] = new_absolute_spends / float(
data[metrics_selected][panel_selected]["channels"][channel][
"conversion_rate"
]
)
# Update total spends
data[metrics_selected][panel_selected][
"modified_total_spends"
] = total_channel_spends
# Update modified scenario metadata
st.session_state["project_dct"]["scenario_planner"][
"modified_metadata_file"
] = data
else:
# Store the message details in session state
st.session_state.message_display = {
"type": "warning",
"message": "Keep total spending within ±50% of the original value.",
"icon": "⚠️",
}
# Function to update percentage_channel_spends change
def percentage_channel_spends_change(
channel_key, channel_spends_actual, channel, metrics_selected, panel_selected
):
# Retrieve the percentage spend change from session state
percentage_channel_spends = round(
st.session_state[f"{channel_key}_per_spends_key"], 0
)
# Calculate the new absolute spends
new_absolute_spends = channel_spends_actual * (1 + percentage_channel_spends / 100)
# Load modified scenario data
data = st.session_state["project_dct"]["scenario_planner"]["modified_metadata_file"]
# Total channel spends
total_channel_spends = 0
for current_channel in list(
data[metrics_selected][panel_selected]["channels"].keys()
):
# Channel key
channel_key = f"{metrics_selected}_{panel_selected}_{current_channel}"
# Current channel spends actual
current_channel_spends_actual = data[metrics_selected][panel_selected][
"channels"
][current_channel]["actual_total_spends"]
# Current channel conversion rate
current_channel_conversion_rate = data[metrics_selected][panel_selected][
"channels"
][current_channel]["conversion_rate"]
# Calculate the current channel absolute spends
current_channel_absolute_spends = (
current_channel_spends_actual
* current_channel_conversion_rate
* (1 + st.session_state[f"{channel_key}_per_spends_key"] / 100)
)
total_channel_spends += current_channel_absolute_spends
# Check if total channel spends are within the allowed range (±50% of the original total spends)
if (
total_channel_spends
< 1.5 * data[metrics_selected][panel_selected]["actual_total_spends"]
and total_channel_spends
> 0.5 * data[metrics_selected][panel_selected]["actual_total_spends"]
):
# Update the modified_total_spends for the specified channel
data[metrics_selected][panel_selected]["channels"][channel][
"modified_total_spends"
] = float(new_absolute_spends) / float(
data[metrics_selected][panel_selected]["channels"][channel][
"conversion_rate"
]
)
# Update total spends
data[metrics_selected][panel_selected][
"modified_total_spends"
] = total_channel_spends
# Update modified scenario metadata
st.session_state["project_dct"]["scenario_planner"][
"modified_metadata_file"
] = data
else:
# Store the message details in session state
st.session_state.message_display = {
"type": "warning",
"message": "Keep total spending within ±50% of the original value.",
"icon": "⚠️",
}
# # Function to update total input change
# def total_input_change(per_change):
# # Load modified scenario data
# data = st.session_state["project_dct"]["scenario_planner"]["modified_metadata_file"]
# # Get the list of all channels in the specified panel and metric
# channel_list = list(data[metrics_selected][panel_selected]["channels"].keys())
# # Iterate over each channel to update their modified spends
# for channel in channel_list:
# # Retrieve the actual spends for the channel
# channel_actual_spends = data[metrics_selected][panel_selected]["channels"][
# channel
# ]["actual_total_spends"]
# # Calculate the modified spends for the channel based on the percent change
# modified_channel_metrics = channel_actual_spends * ((100 + per_change) / 100)
# # Update the channel's modified total spends in the data
# data[metrics_selected][panel_selected]["channels"][channel][
# "modified_total_spends"
# ] = modified_channel_metrics
# # Update modified scenario metadata
# st.session_state["project_dct"]["scenario_planner"][
# "modified_metadata_file"
# ] = data
# Function to update total input change
def total_input_change(per_change, metrics_selected, panel_selected):
# Load modified and original scenario data
modified_data = st.session_state["project_dct"]["scenario_planner"][
"modified_metadata_file"
].copy()
original_data = st.session_state["project_dct"]["scenario_planner"][
"original_metadata_file"
].copy()
# Get the list of all channels in the selected panel and metric
channel_list = list(
modified_data[metrics_selected][panel_selected]["channels"].keys()
)
# Separate channels into unfrozen and frozen based on optimization status
unfrozen_channels, frozen_channels = [], []
for channel in channel_list:
channel_key = f"{metrics_selected}_{panel_selected}_{channel}"
if st.session_state.get(f"{channel_key}_allow_optimize_key", False):
frozen_channels.append(channel)
else:
unfrozen_channels.append(channel)
# Calculate spends and total share from frozen channels, weighted by conversion rate
frozen_channel_share, frozen_channel_spends = 0, 0
for channel in frozen_channels:
conversion_rate = original_data[metrics_selected][panel_selected]["channels"][
channel
]["conversion_rate"]
actual_spends = original_data[metrics_selected][panel_selected]["channels"][
channel
]["actual_total_spends"]
modified_spends = modified_data[metrics_selected][panel_selected]["channels"][
channel
]["modified_total_spends"]
spends_diff = max(actual_spends, 1e-3) * ((100 + per_change) / 100) - max(
modified_spends, 1e-3
)
frozen_channel_share += spends_diff * conversion_rate
frozen_channel_spends += max(actual_spends, 1e-3) * conversion_rate
# Redistribute frozen share across unfrozen channels based on original spend weights
for channel in unfrozen_channels:
conversion_rate = original_data[metrics_selected][panel_selected]["channels"][
channel
]["conversion_rate"]
actual_spends = original_data[metrics_selected][panel_selected]["channels"][
channel
]["actual_total_spends"]
# Calculate weight of the current channel's original spends
total_original_spends = original_data[metrics_selected][panel_selected][
"actual_total_spends"
]
channel_weight = (actual_spends * conversion_rate) / (
total_original_spends - frozen_channel_spends
)
# Calculate the modified spends with redistributed frozen share
modified_spends = (
max(actual_spends, 1e-3) * ((100 + per_change) / 100)
+ (frozen_channel_share * channel_weight) / conversion_rate
)
# Update modified total spends in the modified data
modified_data[metrics_selected][panel_selected]["channels"][channel][
"modified_total_spends"
] = modified_spends
# Save the updated modified scenario data back to the session state
st.session_state["project_dct"]["scenario_planner"][
"modified_metadata_file"
] = modified_data
# Function to update total_absolute_main_key change
def total_absolute_main_key_change(metrics_selected, panel_selected, optimization_goal):
# Do not update if the number is in an invalid format
if not is_valid_number_format(st.session_state["total_absolute_main_key"]):
return
# Get updated absolute from session state
new_absolute = (
convert_to_float(st.session_state["total_absolute_main_key"])
* st.session_state["multiplier"]
)
# Load modified scenario data
data = st.session_state["project_dct"]["scenario_planner"]["modified_metadata_file"]
if optimization_goal == "Spend":
# Retrieve the old absolute spends
old_absolute = data[metrics_selected][panel_selected]["actual_total_spends"]
else:
# Retrieve the old absolute metrics
old_absolute = data[metrics_selected][panel_selected]["actual_total_sales"]
# Calculate the allowable range for new spends
lower_bound = old_absolute * 0.5
upper_bound = old_absolute * 1.5
# Ensure the new spends are within ±50% of the old value
if new_absolute < lower_bound or new_absolute > upper_bound:
new_absolute = old_absolute
# Store the message details in session state
st.session_state.message_display = {
"type": "warning",
"message": "Keep total spending within ±50% of the original value.",
"icon": "⚠️",
}
if optimization_goal == "Spend":
# Update the modified_total_spends with the constrained value
data[metrics_selected][panel_selected]["modified_total_spends"] = new_absolute
else:
# Update the modified_total_sales with the constrained value
data[metrics_selected][panel_selected]["modified_total_sales"] = new_absolute
# Update modified scenario metadata
st.session_state["project_dct"]["scenario_planner"]["modified_metadata_file"] = data
# Update total input change
if optimization_goal == "Spend":
per_change = ((new_absolute - old_absolute) / old_absolute) * 100
total_input_change(per_change, metrics_selected, panel_selected)
# Function to update total_absolute_key change
def total_absolute_key_change(metrics_selected, panel_selected, optimization_goal):
# Get updated absolute from session state
new_absolute = (
convert_to_float(st.session_state["total_absolute_key"])
* st.session_state["multiplier"]
)
# Load modified scenario data
data = st.session_state["project_dct"]["scenario_planner"]["modified_metadata_file"]
if optimization_goal == "Spend":
# Update the modified_total_spends for the specified channel
data[metrics_selected][panel_selected]["modified_total_spends"] = new_absolute
old_absolute = data[metrics_selected][panel_selected]["actual_total_spends"]
else:
# Update the modified_total_sales for the specified channel
data[metrics_selected][panel_selected]["modified_total_sales"] = new_absolute
old_absolute = data[metrics_selected][panel_selected]["actual_total_sales"]
# Update modified scenario metadata
st.session_state["project_dct"]["scenario_planner"]["modified_metadata_file"] = data
# Update total input change
if optimization_goal == "Spend":
per_change = ((new_absolute - old_absolute) / old_absolute) * 100
total_input_change(per_change, metrics_selected, panel_selected)
# Function to update total_absolute_key change
def total_percentage_key_change(
metrics_selected,
panel_selected,
absolute_value,
optimization_goal,
):
# Get updated absolute from session state
new_absolute = absolute_value * (1 + st.session_state["total_percentage_key"] / 100)
# Load modified scenario data
data = st.session_state["project_dct"]["scenario_planner"]["modified_metadata_file"]
if optimization_goal == "Spend":
# Update the modified_total_spends for the specified channel
data[metrics_selected][panel_selected]["modified_total_spends"] = new_absolute
old_absolute = data[metrics_selected][panel_selected]["actual_total_spends"]
else:
# Update the modified_total_sales for the specified channel
data[metrics_selected][panel_selected]["modified_total_sales"] = new_absolute
old_absolute = data[metrics_selected][panel_selected]["actual_total_sales"]
# Update modified scenario metadata
st.session_state["project_dct"]["scenario_planner"]["modified_metadata_file"] = data
# Update total input change
if optimization_goal == "Spend":
per_change = ((new_absolute - old_absolute) / old_absolute) * 100
total_input_change(per_change, metrics_selected, panel_selected)
# Function to update bound change
def bound_change(metrics_selected, panel_selected, channel_key, channel):
# Get updated bounds from session state
new_lower_bound = st.session_state[f"{channel_key}_lower_key"]
new_upper_bound = st.session_state[f"{channel_key}_upper_key"]
if new_lower_bound > new_upper_bound:
new_bounds = [-10, 10]
# Store the message details in session state
st.session_state.message_display = {
"type": "warning",
"message": "Lower bound cannot be greater than Upper bound.",
"icon": "⚠️",
}
else:
new_bounds = [new_lower_bound, new_upper_bound]
# Load modified scenario data
data = st.session_state["project_dct"]["scenario_planner"]["modified_metadata_file"]
# Update the bounds for the specified channel
data[metrics_selected][panel_selected]["channels"][channel]["bounds"] = new_bounds
# Update modified scenario metadata
st.session_state["project_dct"]["scenario_planner"]["modified_metadata_file"] = data
# Function to update freeze change
def freeze_change(metrics_selected, panel_selected, channel_key, channel, channel_list):
# Initialize counter for channels that are not frozen
unfrozen_channel_count = 0
# Check the optimization status of each channel
for current_channel in channel_list:
current_channel_key = f"{metrics_selected}_{panel_selected}_{current_channel}"
unfrozen_channel_count += (
1
if not st.session_state[f"{current_channel_key}_allow_optimize_key"]
else 0
)
# Ensure at least two channels are allowed for optimization
if unfrozen_channel_count < 2:
st.session_state.message_display = {
"type": "warning",
"message": "Please allow at least two channels to be optimized.",
"icon": "⚠️",
}
return
if st.session_state[f"{channel_key}_allow_optimize_key"]:
# Updated bounds from session state
new_lower_bound, new_upper_bound = 0, 0
new_bounds = [new_lower_bound, new_upper_bound]
new_freeze = True
else:
# Updated bounds from session state
new_lower_bound, new_upper_bound = -10, 10
new_bounds = [new_lower_bound, new_upper_bound]
new_freeze = False
# Load modified scenario data
data = st.session_state["project_dct"]["scenario_planner"]["modified_metadata_file"]
# Update the bounds for the specified channel
data[metrics_selected][panel_selected]["channels"][channel]["bounds"] = new_bounds
data[metrics_selected][panel_selected]["channels"][channel]["freeze"] = new_freeze
# Update modified scenario metadata
st.session_state["project_dct"]["scenario_planner"]["modified_metadata_file"] = data
# Function to calculate y, ROI and MROI for given point
def get_point_parms(
x_val,
current_s_curve_params,
current_channel_proportion,
current_conversion_rate,
channel_correction,
):
# Calculate y value for the given spend point
y_val = (
sum(
s_curve(
(x_val * current_channel_proportion),
current_s_curve_params["power"],
current_s_curve_params["K"],
current_s_curve_params["b"],
current_s_curve_params["a"],
current_s_curve_params["x0"],
)
)
+ channel_correction
)
# Calculate MROI using a small nudge for actual spends
nudge = 1e-3
x1 = float(x_val * current_conversion_rate)
y1 = float(y_val)
x2 = x1 + nudge
y2 = (
sum(
s_curve(
((x2 / current_conversion_rate) * current_channel_proportion),
current_s_curve_params["power"],
current_s_curve_params["K"],
current_s_curve_params["b"],
current_s_curve_params["a"],
current_s_curve_params["x0"],
)
)
+ channel_correction
)
mroi_val = (float(y2) - y1) / (x2 - x1) if x2 != x1 else 0
# Calculate ROI
roi_val = y_val / (x_val * current_conversion_rate)
return roi_val, mroi_val, y_val
# Function to find segment value
def find_segment_value(x, roi, mroi, roi_threshold=1, mroi_threshold=0.05):
# Initialize the start and end values of the x array
start_value = x[0]
end_value = x[-1]
# Define the condition for the "green region" where both ROI and MROI exceed their respective thresholds
green_condition = (roi > roi_threshold) & (mroi > mroi_threshold)
# Find indices where ROI exceeds the ROI threshold
left_indices = np.where(roi > roi_threshold)[0]
# Find indices where both ROI and MROI exceed their thresholds (green condition)
right_indices = np.where(green_condition)[0]
# Determine the left value based on the first index where ROI exceeds the threshold
left_value = x[left_indices[0]] if left_indices.size > 0 else x[0]
# Determine the right value based on the last index where both ROI and MROI exceed their thresholds
right_value = x[right_indices[-1]] if right_indices.size > 0 else x[0]
# Ensure the left value does not exceed the right value, adjust if necessary
if left_value > right_value:
left_value = right_value
return start_value, end_value, left_value, right_value
# Function to generate response curves plots
@st.cache_data(show_spinner=False)
def generate_response_curve_plots(
channel_list,
s_curve_params,
channels_proportion,
original_scenario_data,
multiplier,
):
figures, channel_roi_mroi, region_start_end = [], {}, {}
for channel in channel_list:
spends_actual = original_scenario_data["channels"][channel][
"actual_total_spends"
]
conversion_rate = original_scenario_data["channels"][channel]["conversion_rate"]
channel_correction = sum(
original_scenario_data["channels"][channel]["correction"]
)
x_actual = np.linspace(0, 5 * spends_actual, 100)
x_plot = x_actual * conversion_rate
# Calculate y values for the S-curve
y_plot = [
sum(
s_curve(
(x * channels_proportion[channel]),
s_curve_params[channel]["power"],
s_curve_params[channel]["K"],
s_curve_params[channel]["b"],
s_curve_params[channel]["a"],
s_curve_params[channel]["x0"],
)
)
+ channel_correction
for x in x_actual
]
# Calculate ROI and ensure they are scalar values
roi = [float(y) / float(x) if x != 0 else 0 for x, y in zip(x_plot, y_plot)]
# Calculate MROI using a small nudge
nudge = 1e-3
mroi = []
for i in range(len(x_plot)):
x1 = float(x_plot[i])
y1 = float(y_plot[i])
x2 = x1 + nudge
y2 = (
sum(
s_curve(
((x2 / conversion_rate) * channels_proportion[channel]),
s_curve_params[channel]["power"],
s_curve_params[channel]["K"],
s_curve_params[channel]["b"],
s_curve_params[channel]["a"],
s_curve_params[channel]["x0"],
)
)
+ channel_correction
)
mroi_value = (float(y2) - y1) / (x2 - x1) if x2 != x1 else 0
mroi.append(mroi_value)
# Channel correction
channel_correction = sum(
original_scenario_data["channels"][channel]["correction"]
)
# Calculate y, ROI and MROI for the actual spend point
roi_actual, mroi_actual, y_actual = get_point_parms(
spends_actual,
s_curve_params[channel],
channels_proportion[channel],
conversion_rate,
channel_correction,
)
# Create the plotly figure
fig = go.Figure()
# Add S-curve line
fig.add_trace(
go.Scatter(
x=np.array(x_plot) / multiplier,
y=np.array(y_plot) / multiplier,
mode="lines",
name="Metrics",
hoverinfo="text",
text=[
f"Spends: {numerize(x / multiplier)}<br>{metrics_selected_formatted}: {numerize(y / multiplier)}<br>ROI: {r:.2f}<br>MROI: {m:.2f}"
for x, y, r, m in zip(x_plot, y_plot, roi, mroi)
],
)
)
# Add current spend point
fig.add_trace(
go.Scatter(
x=[spends_actual * conversion_rate / multiplier],
y=[y_actual / multiplier],
mode="markers",
marker=dict(color="cyan", size=10, symbol="circle"),
name="Actual Spend",
hoverinfo="text",
text=[
f"Actual Spend: {numerize(spends_actual * conversion_rate / multiplier)}<br>{metrics_selected_formatted}: {numerize(y_actual / multiplier)}<br>ROI: {roi_actual:.2f}<br>MROI: {mroi_actual:.2f}"
],
showlegend=True,
)
)
# ROI Threshold
roi_threshold = st.session_state.roi_threshold
# Scale x and y values
x, y = np.array(x_plot), np.array(y_plot)
x_scaled, y_scaled = x / max(x), y / max(y)
# Calculate MROI scaled starting from the first point
mroi_scaled = np.zeros_like(x_scaled)
for j in range(1, len(x_scaled)):
x1, y1 = x_scaled[j - 1], y_scaled[j - 1]
x2, y2 = x_scaled[j], y_scaled[j]
mroi_scaled[j] = (y2 - y1) / (x2 - x1) if (x2 - x1) != 0 else 0
# Get the start_value, end_value, left_value, right_value for segments
start_value, end_value, left_value, right_value = find_segment_value(
x_plot, np.array(roi), mroi_scaled, roi_threshold, mroi_threshold
)
# Store region start and end points
region_start_end[channel] = {
"start_value": start_value,
"end_value": end_value,
"left_value": left_value,
"right_value": right_value,
}
# Adding background colors
y_max = max(y_plot) * 1.3 # 30% extra space above the max
# Yellow region
fig.add_shape(
type="rect",
x0=start_value / multiplier,
y0=0,
x1=left_value / multiplier,
y1=y_max / multiplier,
line=dict(width=0),
fillcolor="rgba(255, 255, 0, 0.3)",
layer="below",
)
# Green region
fig.add_shape(
type="rect",
x0=left_value / multiplier,
y0=0,
x1=right_value / multiplier,
y1=y_max / multiplier,
line=dict(width=0),
fillcolor="rgba(0, 255, 0, 0.3)",
layer="below",
)
# Red region
fig.add_shape(
type="rect",
x0=right_value / multiplier,
y0=0,
x1=end_value / multiplier,
y1=y_max / multiplier,
line=dict(width=0),
fillcolor="rgba(255, 0, 0, 0.3)",
layer="below",
)
# Layout adjustments
fig.update_layout(
title=f"{name_formating(channel)}",
showlegend=False,
xaxis=dict(
showgrid=True,
showticklabels=True,
tickformat=".2s",
gridcolor="lightgrey",
gridwidth=0.5,
griddash="dot",
),
yaxis=dict(
showgrid=True,
showticklabels=True,
tickformat=".2s",
gridcolor="lightgrey",
gridwidth=0.5,
griddash="dot",
),
template="plotly_white",
margin=dict(l=20, r=20, t=30, b=20),
height=100 * (len(channel_list) + 4 - 1) // 4,
)
figures.append(fig)
# Store data of each channel ROI and MROI
channel_roi_mroi[channel] = {
"actual_roi": roi_actual,
"actual_mroi": mroi_actual,
}
return figures, channel_roi_mroi, region_start_end
# Function to add modified spends/metrics point on plot
def modified_metrics_point(
fig,
modified_spends,
s_curve_params,
channels_proportion,
conversion_rate,
channel_correction,
):
# Calculate ROI, MROI, and y for the modified point
roi_modified, mroi_modified, y_modified = get_point_parms(
modified_spends,
s_curve_params,
channels_proportion,
conversion_rate,
channel_correction,
)
# Add modified spend point
fig.add_trace(
go.Scatter(
x=[modified_spends * conversion_rate / st.session_state["multiplier"]],
y=[y_modified / st.session_state["multiplier"]],
mode="markers",
marker=dict(color="blueviolet", size=10, symbol="circle"),
name="Optimized Spend",
hoverinfo="text",
text=[
f"Modified Spend: {numerize(modified_spends * conversion_rate / st.session_state.multiplier)}<br>{metrics_selected_formatted}: {numerize(y_modified / st.session_state.multiplier)}<br>ROI: {roi_modified:.2f}<br>MROI: {mroi_modified:.2f}"
],
showlegend=True,
)
)
return roi_modified, mroi_modified, fig
# Function to update bound type change
def bound_type_change():
# Get updated bound type from session state
new_bound_type = st.session_state["bound_type_key"]
# Load modified scenario data
data = st.session_state["project_dct"]["scenario_planner"]["modified_metadata_file"]
# Update the bound type
data[metrics_selected][panel_selected]["bound_type"] = new_bound_type
# Set bounds to default value if bound type is False (Default)
channel_list = list(data[metrics_selected][panel_selected]["channels"].keys())
if not new_bound_type:
for channel in channel_list:
data[metrics_selected][panel_selected]["channels"][channel]["bounds"] = [
-10,
10,
]
# Update modified scenario metadata
st.session_state["project_dct"]["scenario_planner"]["modified_metadata_file"] = data
# Function to format the numbers with decimal
def format_value(input_value):
value = abs(input_value)
return f"{input_value:.4f}" if value < 1 else f"{numerize(input_value, 1)}"
# Function to format the numbers with decimal
def round_value(input_value):
value = abs(input_value)
return round(input_value, 4) if value < 1 else round(input_value, 1)
# Function to generate ROI and MROI plots for all channels
@st.cache_data(show_spinner=False)
def roi_mori_plot(channel_roi_mroi):
# Dictionary to store plots
channel_roi_mroi_plot = {}
for channel in channel_roi_mroi:
channel_roi_mroi_data = channel_roi_mroi[channel]
# Extract the data
actual_roi = channel_roi_mroi_data["actual_roi"]
optimized_roi = channel_roi_mroi_data["optimized_roi"]
actual_mroi = channel_roi_mroi_data["actual_mroi"]
optimized_mroi = channel_roi_mroi_data["optimized_mroi"]
# Plot ROI
fig_roi = go.Figure()
fig_roi.add_trace(
go.Bar(
x=["Actual ROI"],
y=[actual_roi],
name="Actual ROI",
marker_color="cyan",
width=1,
text=[format_value(actual_roi)],
textposition="auto",
textfont=dict(color="black", size=14),
)
)
fig_roi.add_trace(
go.Bar(
x=["Optimized ROI"],
y=[optimized_roi],
name="Optimized ROI",
marker_color="blueviolet",
width=1,
text=[format_value(optimized_roi)],
textposition="auto",
textfont=dict(color="black", size=14),
)
)
fig_roi.update_layout(
annotations=[
dict(
x=0.5,
y=1.3,
xref="paper",
yref="paper",
text="ROI",
showarrow=False,
font=dict(size=14),
)
],
barmode="group",
bargap=0,
showlegend=False,
width=110,
height=110,
xaxis=dict(
showticklabels=True,
showgrid=False,
tickangle=0,
ticktext=["Actual", "Optimized"],
tickvals=["Actual ROI", "Optimized ROI"],
),
yaxis=dict(showticklabels=False, showgrid=False),
margin=dict(t=20, b=20, r=0, l=0),
)
# Plot MROI
fig_mroi = go.Figure()
fig_mroi.add_trace(
go.Bar(
x=["Actual MROI"],
y=[actual_mroi],
name="Actual MROI",
marker_color="cyan",
width=1,
text=[format_value(actual_mroi)],
textposition="auto",
textfont=dict(color="black", size=14),
)
)
fig_mroi.add_trace(
go.Bar(
x=["Optimized MROI"],
y=[optimized_mroi],
name="Optimized MROI",
marker_color="blueviolet",
width=1,
text=[format_value(optimized_mroi)],
textposition="auto",
textfont=dict(color="black", size=14),
)
)
fig_mroi.update_layout(
annotations=[
dict(
x=0.5,
y=1.3,
xref="paper",
yref="paper",
text="MROI",
showarrow=False,
font=dict(size=14),
)
],
barmode="group",
bargap=0,
showlegend=False,
width=110,
height=110,
xaxis=dict(
showticklabels=True,
showgrid=False,
tickangle=0,
ticktext=["Actual", "Optimized"],
tickvals=["Actual MROI", "Optimized MROI"],
),
yaxis=dict(showticklabels=False, showgrid=False),
margin=dict(t=20, b=20, r=0, l=0),
)
# Store plots
channel_roi_mroi_plot[channel] = {"fig_roi": fig_roi, "fig_mroi": fig_mroi}
return channel_roi_mroi_plot
# Function to save the current scenario with the mentioned name
def save_scenario(
scenario_dict,
metrics_selected,
panel_selected,
optimization_goal,
channel_roi_mroi,
timeframe,
multiplier,
):
# Remove extra space at start and ends
if st.session_state["scenario_name"] is not None:
st.session_state["scenario_name"] = st.session_state["scenario_name"].strip()
if (
st.session_state["scenario_name"] is None
or st.session_state["scenario_name"] == ""
):
# Store the message details in session state
st.session_state.message_display = {
"type": "warning",
"message": "Please provide a name to save the scenario.",
"icon": "⚠️",
}
return
# Check the scenario name
if not (
word_length_limit_lower
<= len(st.session_state["scenario_name"])
<= word_length_limit_upper
and bool(re.match("^[A-Za-z0-9_]*$", st.session_state["scenario_name"]))
):
# Store the warning message details in session state
st.session_state.message_display = {
"type": "warning",
"message": f"Please provide a valid scenario name ({word_length_limit_lower}-{word_length_limit_upper} characters, only A-Z, a-z, 0-9, and _).",
"icon": "⚠️",
}
return
# Check if the dictionary is empty
if not scenario_dict:
# Store the message details in session state
st.session_state.message_display = {
"type": "warning",
"message": "Nothing to save. The scenario data is empty.",
"icon": "⚠️",
}
return
# Add additional scenario details
scenario_dict["panel_selected"] = panel_selected
scenario_dict["metrics_selected"] = metrics_selected
scenario_dict["optimization"] = optimization_goal
scenario_dict["channel_roi_mroi"] = channel_roi_mroi
scenario_dict["timeframe"] = timeframe
scenario_dict["multiplier"] = multiplier
# Load existing scenarios
saved_scenarios_dict = st.session_state["project_dct"]["saved_scenarios"][
"saved_scenarios_dict"
]
# Check if the name is already taken
if st.session_state["scenario_name"] in saved_scenarios_dict.keys():
# Store the message details in session state
st.session_state.message_display = {
"type": "warning",
"message": "Name already exists. Please change the name or delete the existing scenario from the Saved Scenario page.",
"icon": "⚠️",
}
return
# Update the dictionary with the new scenario
saved_scenarios_dict[st.session_state["scenario_name"]] = scenario_dict
# Update the updated dictionary
st.session_state["project_dct"]["saved_scenarios"][
"saved_scenarios_dict"
] = saved_scenarios_dict
# Update DB
update_db(
prj_id=st.session_state["project_number"],
page_nam="Scenario Planner",
file_nam="project_dct",
pkl_obj=pickle.dumps(st.session_state["project_dct"]),
schema=schema,
)
# Store the message details in session state
st.session_state.message_display = {
"type": "success",
"message": f"Scenario '{st.session_state.scenario_name}' has been successfully saved!",
"icon": "💾",
}
st.toast(
f"Scenario '{st.session_state.scenario_name}' has been successfully saved!",
icon="💾",
)
# Clear the scenario name input
st.session_state["scenario_name"] = ""
# Function to calculate the RGBA color code based on the spends value and region boundaries
def calculate_rgba(spends_value, region_start_end):
# Get region start and end points
start_value = region_start_end["start_value"]
end_value = region_start_end["end_value"]
left_value = region_start_end["left_value"]
right_value = region_start_end["right_value"]
# Calculate alpha dynamically based on the position within the range
def calculate_alpha(position, start, end, min_alpha=0.1, max_alpha=0.4):
return min_alpha + (max_alpha - min_alpha) * (position - start) / (end - start)
if start_value <= spends_value <= left_value:
# Yellow range (0, 128, 0) - More transparent towards left, darker towards start
alpha = calculate_alpha(spends_value, left_value, start_value)
return (255, 255, 0, alpha) # RGB for yellow
elif left_value < spends_value <= right_value:
# Green range (0, 128, 0) - More transparent towards right, darker towards left
alpha = calculate_alpha(spends_value, right_value, left_value)
return (0, 128, 0, alpha) # RGB for green
elif right_value < spends_value <= end_value:
# Red range (255, 0, 0) - More transparent towards right, darker towards end
alpha = calculate_alpha(spends_value, right_value, end_value)
return (255, 0, 0, alpha) # RGB for red
# Function to format and display the channel name with a color and background color
def display_channel_name_with_background_color(
channel_name, background_color=(0, 128, 0, 0.1)
):
formatted_name = name_formating(channel_name)
# Unpack the RGBA values
r, g, b, a = background_color
# Create the HTML content with specified background color
html_content = f"""
<div style="
background-color: rgba({r}, {g}, {b}, {a});
padding: 10px;
display: inline-block;
border-radius: 5px;">
<strong>{formatted_name}</strong>
</div>
"""
return html_content
# Function to check optimization success
def check_optimization_success(
channel_list,
input_channels_spends,
output_channels_spends,
bounds_dict,
optimization_goal,
modified_total_metrics,
actual_total_metrics,
modified_total_spends,
actual_total_spends,
original_total_spends,
optimization_success,
):
for channel in channel_list:
input_channel_spends = input_channels_spends[channel]
output_channel_spends = abs(output_channels_spends[channel])
lower_percent = bounds_dict[channel][0]
upper_percent = bounds_dict[channel][1]
lower_allowed_value = max(
(input_channel_spends * (100 + lower_percent - 1) / 100), 0
) # 1% Tolerance
upper_allowed_value = max(
(input_channel_spends * (100 + upper_percent + 1) / 100), 10
) # 1% Tolerance
# Check if output spends are within allowed bounds
if (
output_channel_spends > upper_allowed_value
or output_channel_spends < lower_allowed_value
):
error_message = "Optimization failed: strict bounds. Use flexible bounds."
return False, error_message, "❌"
# Check optimization goal and percent change
if optimization_goal == "Spend":
percent_change_happened = abs(
(modified_total_spends - actual_total_spends) / actual_total_spends
)
if percent_change_happened > 0.01: # Greater than 1% Tolerance
error_message = "Optimization failed: input and optimized spends differ. Use flexible bounds."
return False, error_message, "❌"
else:
percent_change_happened = abs(
(modified_total_metrics - actual_total_metrics) / actual_total_metrics
)
if percent_change_happened > 0.01: # Greater than 1% Tolerance
error_message = "Optimization failed: input and optimized metrics differ. Use flexible bounds."
return False, error_message, "❌"
# Define the allowable range for new spends
lower_limit = original_total_spends * 0.5
upper_limit = original_total_spends * 1.5
# Check if the new spends are within the allowed range
if modified_total_spends < lower_limit or modified_total_spends > upper_limit:
error_message = "New spends optimized are outside the allowed range of ±50%."
return False, error_message, "❌"
# Check if the optimization failed to converge
if not optimization_success:
error_message = "Optimization failed to converge."
return False, error_message, "❌"
return True, "Optimization successful.", "💸"
# Function to check if the optimization target is achievable within the given bounds
def check_target_achievability(
optimize_allow,
optimization_goal,
lower_achievable_target,
upper_achievable_target,
total_absolute_target,
):
# Format the messages with appropriate numerization and naming
given_input = "response metric" if optimization_goal == "Spend" else "spends"
# Combined achievable message
achievable_message = (
f"Achievable {optimization_goal} with the given {given_input} and bounds ranges from "
f"{numerize(lower_achievable_target / st.session_state.multiplier)} to "
f"{numerize(upper_achievable_target / st.session_state.multiplier)}"
)
# Check if the target is within achievable bounds
if (lower_achievable_target > total_absolute_target) or (
upper_achievable_target < total_absolute_target
):
# Update session state with the error message
st.session_state.message_display = {
"type": "error",
"message": achievable_message,
"icon": "⚠️",
}
optimize_allow = False
elif (st.session_state.message_display["message"] is not None) and (
str(st.session_state.message_display["message"]).startswith("Achievable")
):
# Clear message_display
st.session_state.message_display = {
"type": "success",
"message": None,
"icon": "",
}
optimize_allow = True
return optimize_allow
# Function to display a message with the appropriate type and icon
def display_message():
# Retrieve the message details from the session state
message_type = st.session_state.message_display["type"]
message = st.session_state.message_display["message"]
icon = st.session_state.message_display["icon"]
# Display the message if it exists
if message is not None:
if message_type == "success":
st.success(message, icon=icon)
# Log message
log_message("info", message, "Scenario Planner")
elif message_type == "warning":
st.warning(message, icon=icon)
# Log message
log_message("warning", message, "Scenario Planner")
elif message_type == "error":
st.error(message, icon=icon)
# Log message
log_message("error", message, "Scenario Planner")
else:
st.info(message, icon=icon)
# Log message
log_message("info", message, "Scenario Planner")
# Function to change bounds for all channels
def all_bound_change(channel_list, apply_all=False):
# Fetch updated upper and lower bounds for all channels
all_lower_bound = st.session_state["all_lower_key"]
all_upper_bound = st.session_state["all_upper_key"]
# Check if lower bound is not greater than upper bound
if all_lower_bound < all_upper_bound:
# Load modified scenario data
data = st.session_state["project_dct"]["scenario_planner"][
"modified_metadata_file"
]
# Update the bounds for the all channels
if apply_all:
for channel in channel_list:
if not data[metrics_selected][panel_selected]["channels"][channel][
"freeze"
]:
data[metrics_selected][panel_selected]["channels"][channel][
"bounds"
] = [
all_lower_bound,
all_upper_bound,
]
# Update the bounds for the all channels holder
data[metrics_selected][panel_selected]["bounds"] = [
all_lower_bound,
all_upper_bound,
]
# Update modified scenario metadata
st.session_state["project_dct"]["scenario_planner"][
"modified_metadata_file"
] = data
else:
# Store the message details in session state
st.session_state.message_display = {
"type": "warning",
"message": "Lower bound cannot be greater than Upper bound.",
"icon": "⚠️",
}
return
try:
# Page Title
st.title("Scenario Planner")
# Retrieve the list of all metric names from the specified directory
metrics_list = get_metrics_names()
# Check if there are any metrics available in the metrics list
if not metrics_list:
# Display a warning message to the user if no metrics are found
st.warning(
"Please tune at least one model to generate response curves data.",
icon="⚠️",
)
# Log message
log_message(
"warning",
"Please tune at least one model to generate response curves data.",
"Scenario Planner",
)
st.stop()
# Widget columns
metric_col, panel_col, timeframe_col, save_progress_col = st.columns(4)
# Metrics Selection
metrics_selected = metric_col.selectbox(
"Response Metrics",
sorted(metrics_list),
format_func=name_formating,
key="response_metrics_selectbox_sp",
index=0,
)
metrics_selected_formatted = name_formating(metrics_selected)
# Retrieve the list of all panel names for specified Metrics
panel_list = get_panels_names(metrics_selected)
# Panel Selection
panel_selected = panel_col.selectbox(
"Panel",
sorted(panel_list),
format_func=name_formating,
key="panel_selected_selectbox_sp",
index=0,
)
panel_selected_formatted = name_formating(panel_selected)
# Timeframe Selection
timeframe_selected = timeframe_col.selectbox(
"Timeframe",
["Input Data Range", "Yearly", "Quarterly", "Monthly"],
key="timeframe_selected_selectbox_sp",
index=0,
)
# Check if the RCS metadata file does not exist
if (
st.session_state["project_dct"]["response_curves"]["original_metadata_file"]
is None
or st.session_state["project_dct"]["response_curves"]["modified_metadata_file"]
is None
):
# RCS metadata file does not exist. Generating new RCS data
generate_rcs_data()
# Log message
log_message(
"info",
"RCS metadata file does not exist. Generating new RCS data.",
"Scenario Planner",
)
# Load rcs metadata files if they exist
original_rcs_data, modified_rcs_data = load_rcs_metadata_files()
# Check if the scenario metadata file does not exist
if (
st.session_state["project_dct"]["scenario_planner"]["original_metadata_file"]
is None
or st.session_state["project_dct"]["scenario_planner"]["modified_metadata_file"]
is None
):
# Scenario file does not exist. Generating new senario file data
generate_scenario_data()
# Load scenario metadata files if they exist
original_data, modified_data = load_scenario_metadata_files()
try:
# Data date range
date_range = pd.to_datetime(
list(original_data[metrics_selected][panel_selected]["channels"].values())[
0
]["dates"]
)
# Calculate the number of days between max and min dates
date_diff = pd.Series(date_range).diff()
day_data = int(
(date_range.max() - date_range.min()).days
+ (6 if date_diff.value_counts().idxmax() == pd.Timedelta(weeks=1) else 0)
)
# Set the multiplier based on the selected timeframe
if timeframe_selected == "Input Data Range":
st.session_state["multiplier"] = 1
elif timeframe_selected == "Yearly":
st.session_state["multiplier"] = day_data / 365
elif timeframe_selected == "Quarterly":
st.session_state["multiplier"] = day_data / 90
elif timeframe_selected == "Monthly":
st.session_state["multiplier"] = day_data / 30
except:
st.session_state["multiplier"] = 1
# Extract original scenario data for the selected metric and panel
original_scenario_data = original_data[metrics_selected][panel_selected]
# Extract modified scenario data for the same metric and panel
modified_scenario_data = modified_data[metrics_selected][panel_selected]
# Display Actual Vs Optimized
st.divider()
(
actual_spends_col,
actual_metrics_col,
actual_CPA_col,
base_col,
optimized_spends_col,
optimized_metrics_col,
optimized_CPA_col,
) = st.columns([1, 1, 1, 1, 1.5, 1.5, 1.5])
# Base Contribution
base_contribution = (
sum(original_scenario_data["constant"]) / st.session_state["multiplier"]
)
# Display Base Metric
base_col.metric(
f"Base {metrics_selected_formatted}",
numerize(base_contribution),
)
# Extracting and formatting values
actual_spends = numerize(
original_scenario_data["actual_total_spends"] / st.session_state["multiplier"]
)
actual_metric_value = numerize(
original_scenario_data["actual_total_sales"] / st.session_state["multiplier"]
)
optimized_spends = numerize(
modified_scenario_data["modified_total_spends"] / st.session_state["multiplier"]
)
optimized_metric_value = numerize(
modified_scenario_data["modified_total_sales"] / st.session_state["multiplier"]
)
# Calculate the deltas (differences) for spends and metrics
spends_delta_value = (
modified_scenario_data["modified_total_spends"]
- original_scenario_data["actual_total_spends"]
) / st.session_state["multiplier"]
metrics_delta_value = (
modified_scenario_data["modified_total_sales"]
- original_scenario_data["actual_total_sales"]
) / st.session_state["multiplier"]
# Calculate the percentage changes for spends and metrics
spends_percentage_change = (
spends_delta_value
/ (
original_scenario_data["actual_total_spends"]
/ st.session_state["multiplier"]
)
) * 100
metrics_percentage_change_media = (
metrics_delta_value
/ (
(
original_scenario_data["actual_total_sales"]
/ st.session_state["multiplier"]
)
- base_contribution
)
) * 100
metrics_percentage_change_all = (
metrics_delta_value
/ (
original_scenario_data["actual_total_sales"]
/ st.session_state["multiplier"]
)
) * 100
# Format the percentage change for display
spends_percentage_display = (
f"({round(spends_percentage_change, 1)}%)"
if abs(spends_percentage_change) >= 0.1
else "(0%)"
)
metrics_percentage_display_media = (
f"({round(metrics_percentage_change_media, 1)}%)"
if abs(metrics_percentage_change_media) >= 0.1
else "(0%)"
)
metrics_percentage_display_all = (
f"({round(metrics_percentage_change_all, 1)}%)"
if abs(metrics_percentage_change_all) >= 0.1
else "(0%)"
)
# Check if the delta for spends is less than 0.1% in absolute terms
if abs(spends_delta_value) < 0.001 * original_scenario_data["actual_total_spends"]:
spends_delta = "0"
else:
spends_delta = numerize(spends_delta_value)
# Check if the delta for metrics is less than 0.1% in absolute terms
if abs(metrics_delta_value) < 0.001 * original_scenario_data["actual_total_sales"]:
metrics_delta = "0"
else:
metrics_delta = numerize(metrics_delta_value)
# Display current and optimized CPA
actual_CPA = (
original_scenario_data["actual_total_spends"]
/ original_scenario_data["actual_total_sales"]
)
optimized_CPA = (
modified_scenario_data["modified_total_spends"]
/ modified_scenario_data["modified_total_sales"]
)
CPA_delta_value = optimized_CPA - actual_CPA
# Calculate the percentage change for CPA
CPA_percentage_change = (
((CPA_delta_value / actual_CPA) * 100) if actual_CPA != 0 else 0
)
CPA_percentage_display = (
f"({round(CPA_percentage_change, 1)}%)"
if abs(CPA_percentage_change) >= 0.1
else "(0%)"
)
# Check if the CPA delta is less than 0.1% in absolute terms
if abs(CPA_delta_value) < 0.001 * actual_CPA:
CPA_delta = "0"
else:
CPA_delta = round_value(CPA_delta_value)
# Display the metrics with percentage changes
actual_CPA_col.metric(
"Actual CPA",
(numerize(actual_CPA) if actual_CPA >= 1000 else round_value(actual_CPA)),
)
optimized_spends_col.metric(
"Optimized Spend",
f"{optimized_spends} {spends_percentage_display}",
delta=spends_delta,
)
optimized_metrics_col.metric(
f"Optimized {metrics_selected_formatted}",
f"{optimized_metric_value} {metrics_percentage_display_all}",
delta=f"{metrics_delta} {metrics_percentage_display_media}",
)
optimized_CPA_col.metric(
"Optimized CPA",
(
f"{numerize(optimized_CPA) if optimized_CPA >= 1000 else round_value(optimized_CPA)} {CPA_percentage_display}"
),
delta=CPA_delta,
delta_color="inverse",
)
# Displaying metrics in the columns
actual_spends_col.metric("Actual Spend", actual_spends)
actual_metrics_col.metric(
f"Actual {metrics_selected_formatted}",
actual_metric_value,
)
# Check if the percentage display for media starts with a negative sign
if str(metrics_percentage_display_all[1:]).startswith("-"):
# If negative, set the color to red
metrics_percentage_display_media_str = f'<span style="color:rgb(255, 43, 43)">red <strong>{metrics_percentage_display_media}</strong></span>'
else:
# If positive, set the color to green
metrics_percentage_display_media_str = f'<span style="color:rgb(9, 171, 59)">green <strong>{metrics_percentage_display_media}</strong></span>'
# Display percentage calculation note
st.markdown(
f"**Note:** The percentage change for the response metric in {metrics_percentage_display_media_str} reflects the change based on the media-driven portion only, excluding the fixed base contribution and the percentage in black **{metrics_percentage_display_all}** represents the change based on the total response metric, including the base contribution. For spends, the percentage change **{spends_percentage_display}** is based on the total actual spends (base spends are always zero).",
unsafe_allow_html=True,
)
# Divider
st.divider()
# Calculate ROI threshold
st.session_state.roi_threshold = (
original_scenario_data["actual_total_sales"]
- sum(original_scenario_data["constant"])
) / original_scenario_data["actual_total_spends"]
# Fetch and sort channels based on actual spends
channel_list = list(
sorted(
original_scenario_data["channels"],
key=lambda channel: (
original_scenario_data["channels"][channel]["actual_total_spends"]
* original_scenario_data["channels"][channel]["conversion_rate"]
),
reverse=True,
)
)
# Create columns for optimization goal and buttons
(
optimization_goal_col,
message_display_col,
button_col,
bounds_col,
) = st.columns([3, 6, 3, 3])
# Display spinnner or message
with message_display_col:
st.write("###")
spinner_placeholder = st.empty()
# Save Progress
with save_progress_col:
st.write("####") # Padding
save_progress_placeholder = st.empty()
# Save page progress
with spinner_placeholder, st.spinner("Saving Progress ..."):
if save_progress_placeholder.button("Save Progress", use_container_width=True):
# Update DB
update_db(
prj_id=st.session_state["project_number"],
page_nam="Scenario Planner",
file_nam="project_dct",
pkl_obj=pickle.dumps(st.session_state["project_dct"]),
schema=schema,
)
# Store the message details in session state
with message_display_col:
st.session_state.message_display = {
"type": "success",
"message": "Progress saved successfully!",
"icon": "💾",
}
st.toast("Progress saved successfully!", icon="💾")
# Create columns for absolute text, slider, percentage number and bound type
absolute_text_col, absolute_slider_col, percentage_number_col, all_bounds_col = (
st.columns([2, 4, 2, 2])
)
# Dropdown for selecting optimization goal
optimization_goal = optimization_goal_col.selectbox(
"Fix", ["Spend", metrics_selected_formatted]
)
# Button columns with padding for alignment
with button_col:
st.write("##") # Padding
optimize_button_col, reset_button_col = st.columns(2)
reset_button_col.button(
"Reset",
use_container_width=True,
on_click=reset_scenario,
args=(metrics_selected, panel_selected),
)
# Absolute value display
if optimization_goal == "Spend":
absolute_value = modified_scenario_data["actual_total_spends"]
st.session_state.total_absolute_main_key = numerize(
modified_scenario_data["modified_total_spends"]
/ st.session_state["multiplier"]
)
else:
absolute_value = modified_scenario_data["actual_total_sales"]
st.session_state.total_absolute_main_key = numerize(
modified_scenario_data["modified_total_sales"]
/ st.session_state["multiplier"]
)
total_absolute = absolute_text_col.text_input(
"Absolute",
key="total_absolute_main_key",
on_change=total_absolute_main_key_change,
args=(
metrics_selected,
panel_selected,
optimization_goal,
),
)
# Generate and process slider options
slider_options = list(
np.linspace(int(0.5 * absolute_value), int(1.5 * absolute_value), 50)
) # Generate range
slider_options.append(
modified_scenario_data["modified_total_spends"]
if optimization_goal == "Spend"
else modified_scenario_data["modified_total_sales"]
)
slider_options = sorted(slider_options) # Sort the list
numerized_slider_options = [
numerize(value / st.session_state["multiplier"]) for value in slider_options
] # Numerize each value
# Slider for adjusting absolute value within a range
st.session_state.total_absolute_key = numerize(
modified_scenario_data["modified_total_spends"] / st.session_state["multiplier"]
if optimization_goal == "Spend"
else modified_scenario_data["modified_total_sales"]
/ st.session_state["multiplier"]
)
slider_value = absolute_slider_col.select_slider(
"Absolute",
numerized_slider_options,
key="total_absolute_key",
on_change=total_absolute_key_change,
args=(
metrics_selected,
panel_selected,
optimization_goal,
),
)
# Number input for percentage value
if optimization_goal == "Spend":
st.session_state.total_percentage_key = int(
round(
(
(
modified_scenario_data["modified_total_spends"]
- modified_scenario_data["actual_total_spends"]
)
/ modified_scenario_data["actual_total_spends"]
)
* 100,
0,
)
)
else:
st.session_state.total_percentage_key = int(
round(
(
(
modified_scenario_data["modified_total_sales"]
- modified_scenario_data["actual_total_sales"]
)
/ modified_scenario_data["actual_total_sales"]
)
* 100,
0,
)
)
percentage_target = percentage_number_col.number_input(
"Percentage",
min_value=-50,
max_value=50,
key="total_percentage_key",
on_change=total_percentage_key_change,
args=(
metrics_selected,
panel_selected,
absolute_value,
optimization_goal,
),
)
# Toggle input for bound type
st.session_state["bound_type_key"] = modified_scenario_data["bound_type"]
with bounds_col:
st.write("##") # Padding
# Columns for custom bounds toggle and apply all bounds button
allow_custom_bounds_col, apply_all_bounds_col = st.columns(2)
# Toggle for enabling/disabling custom bounds
bound_type = allow_custom_bounds_col.toggle(
"Bounds",
on_change=bound_type_change,
key="bound_type_key",
)
# Button to apply all bounds
apply_all_bounds = apply_all_bounds_col.button(
"Apply All",
use_container_width=True,
on_click=all_bound_change,
args=(channel_list, True),
disabled=not bound_type,
)
# Section for setting all lower and upper bounds
with all_bounds_col:
lower_bound_all, upper_bound_all = st.columns([1, 1])
# Initialize session state keys for lower and upper bounds
st.session_state["all_lower_key"] = (modified_scenario_data["bounds"])[0]
st.session_state["all_upper_key"] = (modified_scenario_data["bounds"])[1]
# Input for all lower bounds
all_lower_bound = lower_bound_all.number_input(
"All Lower Bounds",
min_value=-100,
max_value=100,
key="all_lower_key",
on_change=all_bound_change,
args=(channel_list, False),
disabled=not bound_type,
)
# Input for all upper bounds
all_upper_bound = upper_bound_all.number_input(
"All Upper Bounds",
min_value=-100,
max_value=100,
key="all_upper_key",
on_change=all_bound_change,
args=(channel_list, False),
disabled=not bound_type,
)
# Collect inputs from the user interface
total_channel_spends, optimize_allow = 0, True
bounds_dict = {}
s_curve_params = {}
channels_spends = {}
channels_proportion = {}
channels_conversion_ratio = {}
channels_name_plot_placeholder = {}
# Optimization Inputs UI
with st.expander("Optimization Inputs", expanded=True):
# Initialize total contributions for actual and optimized spends and metrics
(
total_actual_spend_contribution,
total_actual_metric_contribution,
total_optimized_spend_contribution,
total_optimized_metric_contribution,
) = (
0,
sum(modified_scenario_data["constant"]),
0,
sum(modified_scenario_data["constant"]),
)
# Iterate over each channel in the channel list
for channel in channel_list:
# Accumulate actual total spends
total_actual_spend_contribution += (
modified_scenario_data["channels"][channel]["actual_total_spends"]
* modified_scenario_data["channels"][channel]["conversion_rate"]
)
# Accumulate actual total sales (metrics)
total_actual_metric_contribution += modified_scenario_data["channels"][
channel
]["actual_total_sales"]
# Accumulate optimized total spends
total_optimized_spend_contribution += (
modified_scenario_data["channels"][channel]["modified_total_spends"]
* modified_scenario_data["channels"][channel]["conversion_rate"]
)
# Accumulate optimized total sales (metrics)
total_optimized_metric_contribution += modified_scenario_data["channels"][
channel
]["modified_total_sales"]
for channel in channel_list:
st.divider()
# Channel key
channel_key = f"{metrics_selected}_{panel_selected}_{channel}"
# Create columns
if st.session_state["bound_type_key"]:
(
name_plot_col,
input_col,
spends_col,
metrics_col,
bounds_input_col,
bounds_display_col,
allow_col,
) = st.columns([3, 2, 2, 2, 2, 2, 1])
else:
(
name_plot_col,
input_col,
spends_col,
metrics_col,
bounds_display_col,
allow_col,
) = st.columns([1.5, 1, 1.5, 1.5, 1, 0.5])
bounds_input_col = st.empty()
# Display channel name and ROI/MROI plot
with name_plot_col:
# Placeholder for channel name
channel_name_placeholder = st.empty()
channel_name_placeholder.markdown(
display_channel_name_with_background_color(channel),
unsafe_allow_html=True,
)
# Placeholder for ROI and MROI plot
channel_plot_placeholder = st.container()
# Store placeholder for channel name and ROI/MROI plots
channels_name_plot_placeholder[channel] = {
"channel_name_placeholder": channel_name_placeholder,
"channel_plot_placeholder": channel_plot_placeholder,
}
# Channel spends and sales
channel_spends_actual = (
original_scenario_data["channels"][channel]["actual_total_spends"]
* original_scenario_data["channels"][channel]["conversion_rate"]
)
channel_metrics_actual = original_scenario_data["channels"][channel][
"actual_total_sales"
]
channel_spends_modified = (
modified_scenario_data["channels"][channel]["modified_total_spends"]
* original_scenario_data["channels"][channel]["conversion_rate"]
)
channel_metrics_modified = modified_scenario_data["channels"][channel][
"modified_total_sales"
]
# Channel spends input
with input_col:
# Absolute Spends Input
st.session_state[f"{channel_key}_abs_spends_key"] = numerize(
modified_scenario_data["channels"][channel]["modified_total_spends"]
* original_scenario_data["channels"][channel]["conversion_rate"]
/ st.session_state["multiplier"]
)
absolute_channel_spends = st.text_input(
"Absolute Spends",
key=f"{channel_key}_abs_spends_key",
on_change=absolute_channel_spends_change,
args=(
channel_key,
channel_spends_actual,
channel,
metrics_selected,
panel_selected,
),
)
# Update Percentage Spends Input
st.session_state[f"{channel_key}_per_spends_key"] = int(
round(
(
(
convert_to_float(
st.session_state[f"{channel_key}_abs_spends_key"]
)
* st.session_state["multiplier"]
- float(channel_spends_actual)
)
/ channel_spends_actual
)
* 100,
0,
)
)
# Percentage Spends Input
percentage_channel_spends = st.number_input(
"Percentage Spends",
min_value=-1000,
max_value=1000,
key=f"{channel_key}_per_spends_key",
on_change=percentage_channel_spends_change,
args=(
channel_key,
channel_spends_actual,
channel,
metrics_selected,
panel_selected,
),
)
# Store channel spends, conversion ratio and proportion list
channels_spends[channel] = original_scenario_data["channels"][channel][
"actual_total_spends"
] * (1 + percentage_channel_spends / 100)
channels_conversion_ratio[channel] = original_scenario_data["channels"][
channel
]["conversion_rate"]
channels_proportion[channel] = original_scenario_data["channels"][
channel
]["spends"] / sum(original_scenario_data["channels"][channel]["spends"])
# Calculate the percent contribution of actual spends for the channel
channel_actual_spend_contribution = round(
(
modified_scenario_data["channels"][channel][
"actual_total_spends"
]
* channels_conversion_ratio[channel]
/ total_actual_spend_contribution
)
* 100,
1,
)
# Calculate the percent contribution of actual metrics (sales) for the channel
channel_actual_metric_contribution = round(
(
modified_scenario_data["channels"][channel][
"actual_total_sales"
]
/ total_actual_metric_contribution
)
* 100,
1,
)
# Calculate the percent contribution of optimized spends for the channel
channel_optimized_spend_contribution = round(
(
modified_scenario_data["channels"][channel][
"modified_total_spends"
]
* channels_conversion_ratio[channel]
/ total_optimized_spend_contribution
)
* 100,
1,
)
# Calculate the percent contribution of optimized metrics (sales) for the channel
channel_optimized_metric_contribution = round(
(
modified_scenario_data["channels"][channel][
"modified_total_sales"
]
/ total_optimized_metric_contribution
)
* 100,
1,
)
# Channel metrics display
with metrics_col:
# Absolute Metrics
st.metric(
f"Actual {name_formating(metrics_selected)}",
value=str(
numerize(
channel_metrics_actual / st.session_state["multiplier"]
)
)
+ f"({channel_actual_metric_contribution}%)",
)
# Optimized Metrics
optimized_metric = (
channel_metrics_modified / st.session_state["multiplier"]
)
actual_metric = channel_metrics_actual / st.session_state["multiplier"]
delta_value = (
channel_metrics_modified - channel_metrics_actual
) / st.session_state["multiplier"]
# Check if the delta is less than 0.1% in absolute terms
if (
abs(delta_value) < 0.001 * actual_metric
): # 0.1% of the actual metric
delta_display = "0"
else:
delta_display = numerize(delta_value)
st.metric(
f"Optimized {name_formating(metrics_selected)}",
value=str(numerize(optimized_metric))
+ f"({channel_optimized_metric_contribution}%)",
delta=delta_display,
)
# Channel spends display
with spends_col:
# Absolute Spends
st.metric(
"Actual Spend",
value=str(
numerize(channel_spends_actual / st.session_state["multiplier"])
)
+ f"({channel_actual_spend_contribution}%)",
)
# Optimized Spends
optimized_spends = (
channel_spends_modified / st.session_state["multiplier"]
)
actual_spends = channel_spends_actual / st.session_state["multiplier"]
delta_spends_value = (
channel_spends_modified - channel_spends_actual
) / st.session_state["multiplier"]
# Check if the delta is less than 0.1% in absolute terms
if (
abs(delta_spends_value) < 0.001 * actual_spends
): # 0.1% of the actual spend
delta_spends_display = "0"
else:
delta_spends_display = numerize(delta_spends_value)
st.metric(
"Optimized Spend",
value=str(numerize(optimized_spends))
+ f"({channel_optimized_spend_contribution}%)",
delta=delta_spends_display,
)
# Channel allows optimize
with allow_col:
# Allow Optimize (Freeze)
st.write("#") # Padding
st.session_state[f"{channel_key}_allow_optimize_key"] = (
modified_scenario_data["channels"][channel]["freeze"]
)
freeze = st.checkbox(
"Freeze",
key=f"{channel_key}_allow_optimize_key",
on_change=freeze_change,
args=(
metrics_selected,
panel_selected,
channel_key,
channel,
channel_list,
),
)
# If channel is frozen, set bounds to keep the spend unchanged
if freeze:
lower_bound, upper_bound = 0, 0 # Freeze the spend at current level
# Channel bounds input
if st.session_state["bound_type_key"]:
with bounds_input_col:
# Channel upper bound
st.session_state[f"{channel_key}_upper_key"] = (
modified_scenario_data["channels"][channel]["bounds"]
)[1]
upper_bound = st.number_input(
"Upper bound (%)",
min_value=-100,
max_value=100,
key=f"{channel_key}_upper_key",
disabled=st.session_state[f"{channel_key}_allow_optimize_key"],
on_change=bound_change,
args=(
metrics_selected,
panel_selected,
channel_key,
channel,
),
)
# Channel lower bound
st.session_state[f"{channel_key}_lower_key"] = (
modified_scenario_data["channels"][channel]["bounds"]
)[0]
lower_bound = st.number_input(
"Lower bound (%)",
min_value=-100,
max_value=100,
key=f"{channel_key}_lower_key",
disabled=st.session_state[f"{channel_key}_allow_optimize_key"],
on_change=bound_change,
args=(
metrics_selected,
panel_selected,
channel_key,
channel,
),
)
# Check if lower bound is greater than upper bound
if lower_bound > upper_bound:
lower_bound = -10 # Default lower bound
upper_bound = 10 # Default upper bound
# Store bounds
bounds_dict[channel] = [lower_bound, upper_bound]
else:
# If channel is frozen, set bounds to keep the spend unchanged
if freeze:
lower_bound, upper_bound = 0, 0 # Freeze the spend at current level
else:
lower_bound = -10 # Default lower bound
upper_bound = 10 # Default upper bound
# Store bounds
bounds_dict[channel] = modified_scenario_data["channels"][channel][
"bounds"
]
# Display the bounds for each channel's spend in the bounds_display_col
with bounds_display_col:
# Retrieve the actual spends for the channel from the original scenario data
actual_spends = (
modified_scenario_data["channels"][channel]["modified_total_spends"]
* modified_scenario_data["channels"][channel]["conversion_rate"]
)
# Calculate the limit for spends
upper_limit_spends = actual_spends * (1 + upper_bound / 100)
lower_limit_spends = actual_spends * (1 + lower_bound / 100)
# Display the upper limit spends
st.metric(
"Upper Bound",
numerize(upper_limit_spends / st.session_state["multiplier"]),
)
st.metric(
"Lower Bound",
numerize(lower_limit_spends / st.session_state["multiplier"]),
)
# Store S-curve parameters
s_curve_params[channel] = get_s_curve_params(
metrics_selected,
panel_selected,
channel,
original_rcs_data,
modified_rcs_data,
)
# Total channel spends
total_channel_spends += (
convert_to_float(st.session_state[f"{channel_key}_abs_spends_key"])
* st.session_state["multiplier"]
)
# Check if total channel spends are within the allowed range (±50% of the original total spends)
if (
total_channel_spends > 1.5 * original_scenario_data["actual_total_spends"]
or total_channel_spends
< 0.5 * original_scenario_data["actual_total_spends"]
):
# Store the message details in session state
st.session_state.message_display = {
"type": "warning",
"message": "Keep total spending within ±50% of the original value.",
"icon": "⚠️",
}
if optimization_goal == "Spend":
# Get maximum achievable spends
lower_achievable_target, upper_achievable_target = 0, 0
for channel in channel_list:
channel_spends_actual = (
channels_spends[channel] * channels_conversion_ratio[channel]
)
lower_achievable_target += channel_spends_actual * (
1 + bounds_dict[channel][0] / 100
)
upper_achievable_target += channel_spends_actual * (
1 + bounds_dict[channel][1] / 100
)
else:
# Get maximum achievable target metric
lower_achievable_target, upper_achievable_target = max_target_achievable(
channels_spends,
s_curve_params,
channels_proportion,
modified_scenario_data,
bounds_dict,
)
# Total target of selected metric
if optimization_goal == "Spend":
total_absolute_target = modified_scenario_data["modified_total_spends"]
else:
total_absolute_target = modified_scenario_data["modified_total_sales"]
# Check if the target is achievable within the specified bounds
if optimize_allow:
optimize_allow = check_target_achievability(
optimize_allow,
name_formating(optimization_goal),
lower_achievable_target,
upper_achievable_target,
total_absolute_target,
)
# Perform the optimization
if optimize_button_col.button(
"Optimize",
use_container_width=True,
disabled=not optimize_allow,
key="run_optimizer",
):
with message_display_col:
with spinner_placeholder, st.spinner("Optimizing ..."):
# Call the optimizer function to get optimized spends
optimized_spends, optimization_success = optimizer(
optimization_goal,
s_curve_params,
channels_spends,
channels_proportion,
channels_conversion_ratio,
total_absolute_target,
bounds_dict,
modified_scenario_data,
)
# Initialize dictionaries to store input and output channel spends
input_channels_spends, output_channels_spends = {}, {}
for channel in channel_list:
# Calculate input channel spends by converting spends using conversion ratio
input_channels_spends[channel] = (
channels_spends[channel] * channels_conversion_ratio[channel]
)
# Calculate output channel spends by converting optimized spends using conversion ratio
output_channels_spends[channel] = (
optimized_spends[channel] * channels_conversion_ratio[channel]
)
# Calculate total actual and modified spends
actual_total_spends = sum(list(input_channels_spends.values()))
modified_total_spends = sum(list(output_channels_spends.values()))
# Retrieve the actual total metrics from modified scenario data
actual_total_metrics = modified_scenario_data["modified_total_sales"]
modified_total_metrics = 0 # Initialize modified total metrics
modified_channels_metrics = {}
# Calculate modified metrics for each channel
for channel in optimized_spends.keys():
channel_s_curve_params = s_curve_params[channel]
spend_proportion = (
optimized_spends[channel] * channels_proportion[channel]
)
# Calculate the metrics using the S-curve function
modified_channels_metrics[channel] = sum(
s_curve(
spend_proportion,
channel_s_curve_params["power"],
channel_s_curve_params["K"],
channel_s_curve_params["b"],
channel_s_curve_params["a"],
channel_s_curve_params["x0"],
)
) + sum(
modified_scenario_data["channels"][channel]["correction"]
) # correction for s-curve
modified_total_metrics += modified_channels_metrics[
channel
] # Add channel metrics to total metrics
# Add the constant and correction term to the modified total metrics
modified_total_metrics += sum(modified_scenario_data["constant"])
# Retrieve the original total spends from modified scenario data
original_total_spends = modified_scenario_data["actual_total_spends"]
# Check the success of the optimization process
success, message, icon = check_optimization_success(
channel_list,
input_channels_spends,
output_channels_spends,
bounds_dict,
optimization_goal,
modified_total_metrics,
actual_total_metrics,
modified_total_spends,
actual_total_spends,
original_total_spends,
optimization_success,
)
# Store the message details in session state
st.session_state.message_display = {
"type": "success" if success else "error",
"message": message,
"icon": icon,
}
# Update data only if the optimization is successful
if success:
# Update the modified spend and metrics for each channel in the scenario data
for channel in channel_list:
modified_scenario_data["channels"][channel][
"modified_total_spends"
] = optimized_spends[channel]
# Update the modified metrics for each channel in the scenario data
modified_scenario_data["channels"][channel][
"modified_total_sales"
] = modified_channels_metrics[channel]
# Update the total modified spends in the scenario data
modified_scenario_data["modified_total_spends"] = (
modified_total_spends
)
# Update the total modified metrics in the scenario data
modified_scenario_data["modified_total_sales"] = (
modified_total_metrics
)
# Load modified scenario data
data = st.session_state["project_dct"]["scenario_planner"][
"modified_metadata_file"
]
# Update the specific section with the modified scenario data
data[metrics_selected][panel_selected] = modified_scenario_data
# Update modified scenario metadata
st.session_state["project_dct"]["scenario_planner"][
"modified_metadata_file"
] = data
# Reset optimizer button
del st.session_state["run_optimizer"]
# Rerun to update values
st.rerun()
########################################## Response Curves ##########################################
# Generate plots
figures, channel_roi_mroi, region_start_end = generate_response_curve_plots(
channel_list,
s_curve_params,
channels_proportion,
original_scenario_data,
st.session_state["multiplier"],
)
# Display Response Curves
st.subheader(f"Response Curves (X: Spends Vs Y: {metrics_selected_formatted})")
with st.expander("Response Curves", expanded=True):
cols = st.columns(4) # Create 4 columns for the first row
for i, fig in enumerate(figures):
col = cols[i % 4] # Rotate through the columns
with col:
# Get channel parameters
channel = channel_list[i]
modified_total_spends = modified_scenario_data["channels"][channel][
"modified_total_spends"
]
conversion_rate = modified_scenario_data["channels"][channel][
"conversion_rate"
]
channel_correction = sum(
modified_scenario_data["channels"][channel]["correction"]
)
# Updated figure with modified metrics point
roi_optimized, mroi_optimized, fig_updated = modified_metrics_point(
fig,
modified_total_spends,
s_curve_params[channel],
channels_proportion[channel],
conversion_rate,
channel_correction,
)
# Store data of each channel ROI and MROI
channel_roi_mroi[channel]["optimized_roi"] = roi_optimized
channel_roi_mroi[channel]["optimized_mroi"] = mroi_optimized
st.plotly_chart(fig_updated, use_container_width=True)
# Start a new row after every 4 plots
if (i + 1) % 4 == 0 and i + 1 < len(figures):
cols = st.columns(4) # Create new row with 4 columns
# Generate the plots
channel_roi_mroi_plot = roi_mori_plot(channel_roi_mroi)
# Display the plots and name with background color
for channel in channel_list:
with channels_name_plot_placeholder[channel]["channel_plot_placeholder"]:
# Create subplots with 2 columns for ROI and MROI
roi_plot_col, mroi_plot_col = st.columns(2)
# Display ROI and MROI plots
roi_plot_col.plotly_chart(channel_roi_mroi_plot[channel]["fig_roi"])
mroi_plot_col.plotly_chart(channel_roi_mroi_plot[channel]["fig_mroi"])
# Placeholder for the channel name
channel_name_placeholder = channels_name_plot_placeholder[channel][
"channel_name_placeholder"
]
# Retrieve modified total spends and conversion rate for the channel
modified_total_spends = modified_scenario_data["channels"][channel][
"modified_total_spends"
]
conversion_rate = modified_scenario_data["channels"][channel]["conversion_rate"]
# Calculate the actual spend value for the channel
channel_spends_value = modified_total_spends * conversion_rate
# Calculate the RGBA color value for the channel based on its spend
channel_rgba_value = calculate_rgba(
channel_spends_value, region_start_end[channel]
)
# Display the channel name with the calculated background color
channel_name_placeholder.markdown(
display_channel_name_with_background_color(channel, channel_rgba_value),
unsafe_allow_html=True,
)
# Input field for the scenario name
st.text_input("Scenario Name", key="scenario_name")
# Disable the "Save Scenario" button until a name is provided
if (
st.session_state["scenario_name"] is None
or st.session_state["scenario_name"] == ""
):
save_scenario_button_disabled = True
else:
save_scenario_button_disabled = False
# Button to save the scenario
save_button_placeholder = st.empty()
with st.spinner("Saving ..."):
save_button_placeholder.button(
"Save Scenario",
on_click=save_scenario,
args=(
modified_scenario_data,
metrics_selected,
panel_selected,
optimization_goal,
channel_roi_mroi,
st.session_state["timeframe_selected_selectbox_sp"],
st.session_state["multiplier"],
),
disabled=save_scenario_button_disabled,
)
########################################## Display Message ##########################################
# Display all message
with message_display_col:
display_message()
except Exception as e:
# Capture the error details
exc_type, exc_value, exc_traceback = sys.exc_info()
error_message = "".join(
traceback.format_exception(exc_type, exc_value, exc_traceback)
)
# Log message
log_message("error", f"An error occurred: {error_message}.", "Scenario Planner")
# Display a warning message
st.warning(
"Oops! Something went wrong. Please try refreshing the tool or creating a new project.",
icon="⚠️",
)
|