File size: 26,884 Bytes
00b00eb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
import streamlit as st
import pandas as pd
from sklearn.preprocessing import MinMaxScaler
import pickle
import os
from utilities_with_panel import load_local_css, set_header
import yaml
from yaml import SafeLoader
import sqlite3
from datetime import timedelta
from utilities import (
    set_header,
    load_local_css,
    update_db,
    project_selection,
    retrieve_pkl_object,
)
from utilities_with_panel import (
    overview_test_data_prep_panel,
    overview_test_data_prep_nonpanel,
    initialize_data_cmp,
    create_channel_summary,
    create_contribution_pie,
    create_contribuion_stacked_plot,
    create_channel_spends_sales_plot,
    format_numbers,
    channel_name_formating,
)
from log_application import log_message
import sys, traceback
from post_gres_cred import db_cred

st.set_page_config(layout="wide")
load_local_css("styles.css")
set_header()


schema = db_cred["schema"]

if "username" not in st.session_state:
    st.session_state["username"] = None

if "project_name" not in st.session_state:
    st.session_state["project_name"] = None

if "project_dct" not in st.session_state:
    project_selection()
    st.stop()

tuned_model = retrieve_pkl_object(
    st.session_state["project_number"], "Model_Tuning", "tuned_model", schema
)

if tuned_model is None:
    st.error("Please save a tuned model")
    st.stop()

if (
    "session_state_saved" in st.session_state["project_dct"]["model_tuning"].keys()
    and st.session_state["project_dct"]["model_tuning"]["session_state_saved"] != []
):
    for key in ["used_response_metrics", "media_data", "bin_dict"]:
        if key not in st.session_state:
            st.session_state[key] = st.session_state["project_dct"]["model_tuning"][
                "session_state_saved"
            ][key]


## DEFINE ALL FUNCTIONS
def get_random_effects(media_data, panel_col, mdf):
    random_eff_df = pd.DataFrame(columns=[panel_col, "random_effect"])
    for i, market in enumerate(media_data[panel_col].unique()):
        print(i, end="\r")
        intercept = mdf.random_effects[market].values[0]
        random_eff_df.loc[i, "random_effect"] = intercept
        random_eff_df.loc[i, panel_col] = market

    return random_eff_df


def process_train_and_test(train, test, features, panel_col, target_col):
    X1 = train[features]

    ss = MinMaxScaler()
    X1 = pd.DataFrame(ss.fit_transform(X1), columns=X1.columns)

    X1[panel_col] = train[panel_col]
    X1[target_col] = train[target_col]

    if test is not None:
        X2 = test[features]
        X2 = pd.DataFrame(ss.transform(X2), columns=X2.columns)
        X2[panel_col] = test[panel_col]
        X2[target_col] = test[target_col]
        return X1, X2
    return X1


def mdf_predict(X_df, mdf, random_eff_df):
    X = X_df.copy()
    X = pd.merge(
        X,
        random_eff_df[[panel_col, "random_effect"]],
        on=panel_col,
        how="left",
    )
    X["pred_fixed_effect"] = mdf.predict(X)

    X["pred"] = X["pred_fixed_effect"] + X["random_effect"]
    X.drop(columns=["pred_fixed_effect", "random_effect"], inplace=True)

    return X


try:
    if "username" in st.session_state and st.session_state["username"] is not None:

        # conn = sqlite3.connect(
        #     r"DB/User.db", check_same_thread=False
        # )  # connection with sql db
        # c = conn.cursor()

        tuned_model = retrieve_pkl_object(
            st.session_state["project_number"], "Model_Tuning", "tuned_model", schema
        )

        if tuned_model is None:
            st.error("Please save a tuned model")
            st.stop()

        if (
            "session_state_saved"
            in st.session_state["project_dct"]["model_tuning"].keys()
            and st.session_state["project_dct"]["model_tuning"]["session_state_saved"]
            != []
        ):
            for key in [
                "used_response_metrics",
                "is_tuned_model",
                "media_data",
                "X_test_spends",
                "spends_data",
            ]:
                st.session_state[key] = st.session_state["project_dct"]["model_tuning"][
                    "session_state_saved"
                ][key]
        elif (
            "session_state_saved"
            in st.session_state["project_dct"]["model_build"].keys()
            and st.session_state["project_dct"]["model_build"]["session_state_saved"]
            != []
        ):
            for key in [
                "used_response_metrics",
                "date",
                "saved_model_names",
                "media_data",
                "X_test_spends",
            ]:
                st.session_state[key] = st.session_state["project_dct"]["model_build"][
                    "session_state_saved"
                ][key]
        else:
            st.error("Please tune a model first")
        st.session_state["bin_dict"] = st.session_state["project_dct"]["model_build"][
            "session_state_saved"
        ]["bin_dict"]
        st.session_state["media_data"].columns = [
            c.lower() for c in st.session_state["media_data"].columns
        ]

        # with open(
        #     os.path.join(st.session_state["project_path"], "data_import.pkl"),
        #     "rb",
        # ) as f:
        #     data = pickle.load(f)

        # # Accessing the loaded objects

        # st.session_state["orig_media_data"] = data["final_df"]

        st.session_state["orig_media_data"] = st.session_state["project_dct"][
            "data_import"
        ][
            "imputed_tool_df"
        ].copy()  # db
        st.session_state["channels"] = st.session_state["project_dct"]["data_import"][
            "group_dict"
        ].copy()
        # target='Revenue'

        # set the panel column
        panel_col = "panel"
        is_panel = (
            True if st.session_state["media_data"][panel_col].nunique() > 1 else False
        )

        date_col = "date"

        cols1 = st.columns([2, 1])
        with cols1[0]:
            st.markdown(f"**Welcome {st.session_state['username']}**")
        with cols1[1]:
            st.markdown(f"**Current Project: {st.session_state['project_name']}**")

        st.title("AI Model Media Performance")

        def remove_response_metric(name):
            # Convert the name to a lowercase string and remove any leading or trailing spaces
            name_str = str(name).lower().strip()

            # Check if the name starts with "response metric" or "response_metric"
            if name_str.startswith("response metric"):
                return name[len("response metric") :].replace("_", " ").strip().title()
            elif name_str.startswith("response_metric"):
                return name[len("response_metric") :].replace("_", " ").strip().title()
            else:
                return name

        sel_target_col = st.selectbox(
            "Select the response metric",
            st.session_state["used_response_metrics"],
            format_func=remove_response_metric,
        )
        sel_target_col_frmttd = sel_target_col.replace("_", " ").replace("-", " ")
        sel_target_col_frmttd = sel_target_col_frmttd.title()
        target_col = (
            sel_target_col.lower()
            .replace(" ", "_")
            .replace("-", "")
            .replace(":", "")
            .replace("__", "_")
        )
        target = sel_target_col

        # Contribution
        if is_panel:
            # read tuned mixedLM model
            if st.session_state["is_tuned_model"][target_col] == True:

                model_dict = retrieve_pkl_object(
                    st.session_state["project_number"],
                    "Model_Tuning",
                    "tuned_model",
                    schema,
                )  # db

                saved_models = list(model_dict.keys())
                required_saved_models = [
                    m.split("__")[0]
                    for m in saved_models
                    if m.split("__")[1] == target_col
                ]

                sel_model = required_saved_models[
                    0
                ]  # only 1 tuned model available per resp metric

                sel_model_dict = model_dict[sel_model + "__" + target_col]

                model = sel_model_dict["Model_object"]
                X_train = sel_model_dict["X_train_tuned"]
                X_test = sel_model_dict["X_test_tuned"]
                best_feature_set = sel_model_dict["feature_set"]

            # Calculate contributions

            st.session_state["orig_media_data"].columns = [
                col.lower()
                .replace(".", "_")
                .replace("@", "_")
                .replace(" ", "_")
                .replace("-", "")
                .replace(":", "")
                .replace("__", "_")
                for col in st.session_state["orig_media_data"].columns
            ]

            media_data = st.session_state["media_data"]

            contri_df = pd.DataFrame()

            y = []
            y_pred = []

            random_eff_df = get_random_effects(media_data, panel_col, model)
            random_eff_df["fixed_effect"] = model.fe_params["Intercept"]
            random_eff_df["panel_effect"] = (
                random_eff_df["random_effect"] + random_eff_df["fixed_effect"]
            )

            coef_df = pd.DataFrame(model.fe_params)
            coef_df.reset_index(inplace=True)
            coef_df.columns = ["feature", "coef"]

            x_train_contribution = X_train.copy()
            x_test_contribution = X_test.copy()

            # preprocessing not needed since X_train is already preprocessed
            # X1, X2 = process_train_and_test(x_train_contribution, x_test_contribution, best_feature_set, panel_col, target_col)
            # x_train_contribution[best_feature_set] = X1[best_feature_set]
            # x_test_contribution[best_feature_set] = X2[best_feature_set]

            x_train_contribution = mdf_predict(
                x_train_contribution, model, random_eff_df
            )
            x_test_contribution = mdf_predict(x_test_contribution, model, random_eff_df)

            x_train_contribution = pd.merge(
                x_train_contribution,
                random_eff_df[[panel_col, "panel_effect"]],
                on=panel_col,
                how="left",
            )
            x_test_contribution = pd.merge(
                x_test_contribution,
                random_eff_df[[panel_col, "panel_effect"]],
                on=panel_col,
                how="left",
            )

            for i in range(len(coef_df))[1:]:
                coef = coef_df.loc[i, "coef"]
                col = coef_df.loc[i, "feature"]
                if col.lower() != "intercept":
                    x_train_contribution[str(col) + "_contr"] = (
                        coef * x_train_contribution[col]
                    )
                    x_test_contribution[str(col) + "_contr"] = (
                        coef * x_train_contribution[col]
                    )

            tuning_cols = [
                c
                for c in x_train_contribution.filter(regex="contr").columns
                if c
                in [
                    "day_of_week_contr",
                    "Trend_contr",
                    "sine_wave_contr",
                    "cosine_wave_contr",
                ]
            ]
            flag_cols = [
                c
                for c in x_train_contribution.filter(regex="contr").columns
                if "_flag" in c
            ]

            # add exogenous contribution to base
            all_exog_vars = st.session_state["bin_dict"]["Exogenous"]
            all_exog_vars = [
                var.lower()
                .replace(".", "_")
                .replace("@", "_")
                .replace(" ", "_")
                .replace("-", "")
                .replace(":", "")
                .replace("__", "_")
                for var in all_exog_vars
            ]
            exog_cols = []
            if len(all_exog_vars) > 0:
                for col in x_train_contribution.filter(regex="contr").columns:
                    if (
                        len([exog_var for exog_var in all_exog_vars if exog_var in col])
                        > 0
                    ):
                        exog_cols.append(col)

            base_cols = ["panel_effect"] + flag_cols + tuning_cols + exog_cols

            x_train_contribution["base_contr"] = x_train_contribution[base_cols].sum(
                axis=1
            )
            x_train_contribution.drop(columns=base_cols, inplace=True)
            x_test_contribution["base_contr"] = x_test_contribution[base_cols].sum(
                axis=1
            )
            x_test_contribution.drop(columns=base_cols, inplace=True)

            overall_contributions = pd.concat(
                [x_train_contribution, x_test_contribution]
            ).reset_index(drop=True)

            overview_test_data_prep_panel(
                overall_contributions,
                st.session_state["orig_media_data"],
                st.session_state["spends_data"],
                date_col,
                panel_col,
                target_col,
            )

        else:  # NON PANEL
            if st.session_state["is_tuned_model"][target_col] == True:  # Sprint4
                # with open(
                #     os.path.join(st.session_state["project_path"], "tuned_model.pkl"),
                #     "rb",
                # ) as file:
                #     model_dict = pickle.load(file)

                model_dict = retrieve_pkl_object(
                    st.session_state["project_number"],
                    "Model_Tuning",
                    "tuned_model",
                    schema,
                )  # db

                saved_models = list(model_dict.keys())
                required_saved_models = [
                    m.split("__")[0]
                    for m in saved_models
                    if m.split("__")[1] == target_col
                ]

                sel_model = required_saved_models[
                    0
                ]  # only 1 tuned model available per resp metric
                sel_model_dict = model_dict[sel_model + "__" + target_col]

                model = sel_model_dict["Model_object"]
                X_train = sel_model_dict["X_train_tuned"]
                X_test = sel_model_dict["X_test_tuned"]
                best_feature_set = sel_model_dict["feature_set"]

            x_train_contribution = X_train.copy()
            x_test_contribution = X_test.copy()

            x_train_contribution["pred"] = model.predict(
                x_train_contribution[best_feature_set]
            )
            x_test_contribution["pred"] = model.predict(
                x_test_contribution[best_feature_set]
            )

            coef_df = pd.DataFrame(model.params)
            coef_df.reset_index(inplace=True)
            coef_df.columns = ["feature", "coef"]

            # st.write(coef_df)
            for i in range(len(coef_df)):
                coef = coef_df.loc[i, "coef"]
                col = coef_df.loc[i, "feature"]
                if col != "const":
                    x_train_contribution[str(col) + "_contr"] = (
                        coef * x_train_contribution[col]
                    )
                    x_test_contribution[str(col) + "_contr"] = (
                        coef * x_test_contribution[col]
                    )
                else:
                    x_train_contribution["const"] = coef
                    x_test_contribution["const"] = coef

            tuning_cols = [
                c
                for c in x_train_contribution.filter(regex="contr").columns
                if c
                in [
                    "day_of_week_contr",
                    "Trend_contr",
                    "sine_wave_contr",
                    "cosine_wave_contr",
                ]
            ]
            flag_cols = [
                c
                for c in x_train_contribution.filter(regex="contr").columns
                if "_flag" in c
            ]

            # add exogenous contribution to base
            all_exog_vars = st.session_state["bin_dict"]["Exogenous"]
            all_exog_vars = [
                var.lower()
                .replace(".", "_")
                .replace("@", "_")
                .replace(" ", "_")
                .replace("-", "")
                .replace(":", "")
                .replace("__", "_")
                for var in all_exog_vars
            ]
            exog_cols = []
            if len(all_exog_vars) > 0:
                for col in x_train_contribution.filter(regex="contr").columns:
                    if (
                        len([exog_var for exog_var in all_exog_vars if exog_var in col])
                        > 0
                    ):
                        exog_cols.append(col)

            base_cols = ["const"] + flag_cols + tuning_cols + exog_cols
            # st.write(base_cols)
            x_train_contribution["base_contr"] = x_train_contribution[base_cols].sum(
                axis=1
            )
            x_train_contribution.drop(columns=base_cols, inplace=True)

            x_test_contribution["base_contr"] = x_test_contribution[base_cols].sum(
                axis=1
            )
            x_test_contribution.drop(columns=base_cols, inplace=True)
            # x_test_contribution.to_csv("Test/test_contr.csv", index=False)

            overall_contributions = pd.concat(
                [x_train_contribution, x_test_contribution]
            ).reset_index(drop=True)
            # overall_contributions.to_csv("Test/overall_contributions.csv", index=False)

            overview_test_data_prep_nonpanel(
                overall_contributions,
                st.session_state["orig_media_data"].copy(),
                st.session_state["spends_data"].copy(),
                date_col,
                target_col,
            )
        # for k, v in st.session_sta
        # te.items():

        #     if k not in ['logout', 'login','config'] and not k.startswith('FormSubmitter'):
        #         st.session_state[k] = v

        # authenticator = st.session_state.get('authenticator')

        # if authenticator is None:
        #     authenticator = load_authenticator()

        # name, authentication_status, username = authenticator.login('Login', 'main')
        # auth_status = st.session_state['authentication_status']

        # if auth_status:
        #     authenticator.logout('Logout', 'main')

        #     is_state_initiaized = st.session_state.get('initialized',False)
        #     if not is_state_initiaized:

        min_date = X_train[date_col].min().date()
        max_date = X_test[date_col].max().date()
        if "media_performance" not in st.session_state["project_dct"]:
            st.session_state["project_dct"]["media_performance"] = {
                "start_date": None,
                "end_date": None,
            }

        start_default = st.session_state["project_dct"]["media_performance"].get(
            "start_date", None
        )
        start_default = start_default if start_default is not None else min_date
        start_default = start_default if start_default > min_date else min_date
        start_default = start_default if start_default < max_date else min_date

        end_default = st.session_state["project_dct"]["media_performance"].get(
            "end_date", None
        )
        end_default = end_default if end_default is not None else max_date
        end_default = end_default if end_default > min_date else max_date
        end_default = end_default if end_default < max_date else max_date

        st.write("Select a timeline for analysis")
        date_columns = st.columns(2)

        with date_columns[0]:
            start_date = st.date_input(
                "Select Start Date",
                start_default,
                min_value=min_date,
                max_value=max_date,
            )
            if (start_date < min_date) or (start_date > max_date):
                st.error("Please select dates in the range of the dates in the data")
                st.stop()
        end_default = (
            end_default if end_default > start_date + timedelta(days=1) else max_date
        )
        with date_columns[1]:
            end_default = (
                end_default
                if pd.Timestamp(end_default) >= pd.Timestamp(start_date)
                else start_date
            )

            end_date = st.date_input(
                "Select End Date",
                end_default,
                min_value=start_date + timedelta(days=1),
                max_value=max_date,
            )
        if (
            (start_date < min_date)
            or (end_date < min_date)
            or (start_date > max_date)
            or (end_date > max_date)
        ):
            st.error("Please select dates in the range of the dates in the data")
            st.stop()
        if end_date < start_date + timedelta(days=1):
            st.error("Please select end date after start date")
            st.stop()

        st.session_state["project_dct"]["media_performance"]["start_date"] = start_date
        st.session_state["project_dct"]["media_performance"]["end_date"] = end_date

        st.header("Overview of Previous Media Spend")

        initialize_data_cmp(target_col, is_panel, panel_col, start_date, end_date)
        scenario = st.session_state["scenario"]
        raw_df = st.session_state["raw_df"]

        columns = st.columns(2)

        with columns[0]:
            st.metric(
                label="Media Spend",
                value=format_numbers(float(scenario.actual_total_spends)),
            )
        ###print(f"##################### {scenario.actual_total_sales} ##################")
        with columns[1]:
            st.metric(
                label=sel_target_col_frmttd,
                value=format_numbers(
                    float(scenario.actual_total_sales), include_indicator=False
                ),
            )

        actual_summary_df = create_channel_summary(scenario, sel_target_col_frmttd)
        actual_summary_df["Channel"] = actual_summary_df["Channel"].apply(
            channel_name_formating
        )

        columns = st.columns((3, 1))
        with columns[0]:
            with st.expander("Channel wise overview"):
                st.markdown(
                    actual_summary_df.style.set_table_styles(
                        [
                            {
                                "selector": "th",
                                "props": [("background-color", "#f6dcc7")],
                            },
                            {
                                "selector": "tr:nth-child(even)",
                                "props": [("background-color", "#f6dcc7")],
                            },
                        ]
                    ).to_html(),
                    unsafe_allow_html=True,
                )

        st.markdown("<hr>", unsafe_allow_html=True)
        ##############################

        st.plotly_chart(
            create_contribution_pie(scenario, sel_target_col_frmttd),
            use_container_width=True,
        )
        st.markdown("<hr>", unsafe_allow_html=True)

        ################################3
        st.plotly_chart(
            create_contribuion_stacked_plot(scenario, sel_target_col_frmttd),
            use_container_width=True,
        )
        st.markdown("<hr>", unsafe_allow_html=True)
        #######################################

        selected_channel_name = st.selectbox(
            "Channel",
            st.session_state["channels_list"] + ["non media"],
            format_func=channel_name_formating,
        )
        selected_channel = scenario.channels.get(selected_channel_name, None)

        st.plotly_chart(
            create_channel_spends_sales_plot(selected_channel, sel_target_col_frmttd),
            use_container_width=True,
        )

        st.markdown("<hr>", unsafe_allow_html=True)

        if st.button("Save this session", use_container_width=True):

            project_dct_pkl = pickle.dumps(st.session_state["project_dct"])

            update_db(
                st.session_state["project_number"],
                "Current_Media_Performance",
                "project_dct",
                project_dct_pkl,
                schema,
                # resp_mtrc=None,
            )  # db

            st.success("Session Saved!")

        # Remove "response_metric_" from the start and "_total" from the end
        if str(target_col).startswith("response_metric_"):
            target_col = target_col.replace("response_metric_", "", 1)

        # Remove the last 6 characters (length of "_total")
        if str(target_col).endswith("_total"):
            target_col = target_col[:-6]

        if (
            st.session_state["project_dct"]["current_media_performance"][
                "model_outputs"
            ][target_col]
            is not None
        ):
            if (
                len(
                    st.session_state["project_dct"]["current_media_performance"][
                        "model_outputs"
                    ][target_col]["contribution_data"]
                )
                > 0
            ):
                st.download_button(
                    label="Download Contribution File",
                    data=st.session_state["project_dct"]["current_media_performance"][
                        "model_outputs"
                    ][target_col]["contribution_data"].to_csv(),
                    file_name="contributions.csv",
                    key="dwnld_contr",
                )
except:
    exc_type, exc_value, exc_traceback = sys.exc_info()
    error_message = "".join(
        traceback.format_exception(exc_type, exc_value, exc_traceback)
    )
    log_message("error", f"Error: {error_message}", "Current Media Performance")
    st.warning("An error occured, please try again", icon="⚠️")