File size: 33,459 Bytes
00b00eb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
import plotly.express as px
import numpy as np
import plotly.graph_objects as go
import streamlit as st
import pandas as pd
import statsmodels.api as sm

# from sklearn.metrics import mean_absolute_percentage_error
import sys
import os
from utilities import set_header, load_local_css
import seaborn as sns
import matplotlib.pyplot as plt
import tempfile
from sklearn.preprocessing import MinMaxScaler

# from st_aggrid import AgGrid
# from st_aggrid import GridOptionsBuilder, GridUpdateMode
# from st_aggrid import GridOptionsBuilder
import sys
import re
import pickle
from sklearn.metrics import r2_score
from data_prep import plot_actual_vs_predicted
import sqlite3
from utilities import (
    set_header,
    load_local_css,
    update_db,
    project_selection,
    retrieve_pkl_object,
)
from post_gres_cred import db_cred
from log_application import log_message
import sys, traceback

schema = db_cred["schema"]

sys.setrecursionlimit(10**6)

original_stdout = sys.stdout
sys.stdout = open("temp_stdout.txt", "w")
sys.stdout.close()
sys.stdout = original_stdout

st.set_page_config(layout="wide")
load_local_css("styles.css")
set_header()


## DEFINE ALL FUCNTIONS
def plot_residual_predicted(actual, predicted, df_):
    df_["Residuals"] = actual - pd.Series(predicted)
    df_["StdResidual"] = (df_["Residuals"] - df_["Residuals"].mean()) / df_[
        "Residuals"
    ].std()

    # Create a Plotly scatter plot
    fig = px.scatter(
        df_,
        x=predicted,
        y="StdResidual",
        opacity=0.5,
        color_discrete_sequence=["#11B6BD"],
    )

    # Add horizontal lines
    fig.add_hline(y=0, line_dash="dash", line_color="darkorange")
    fig.add_hline(y=2, line_color="red")
    fig.add_hline(y=-2, line_color="red")

    fig.update_xaxes(title="Predicted")
    fig.update_yaxes(title="Standardized Residuals (Actual - Predicted)")

    # Set the same width and height for both figures
    fig.update_layout(
        title="Residuals over Predicted Values",
        autosize=False,
        width=600,
        height=400,
    )

    return fig


def residual_distribution(actual, predicted):
    Residuals = actual - pd.Series(predicted)

    # Create a Seaborn distribution plot
    sns.set(style="whitegrid")
    plt.figure(figsize=(6, 4))
    sns.histplot(Residuals, kde=True, color="#11B6BD")

    plt.title(" Distribution of Residuals")
    plt.xlabel("Residuals")
    plt.ylabel("Probability Density")

    return plt


def qqplot(actual, predicted):
    Residuals = actual - pd.Series(predicted)
    Residuals = pd.Series(Residuals)
    Resud_std = (Residuals - Residuals.mean()) / Residuals.std()

    # Create a QQ plot using Plotly with custom colors
    fig = go.Figure()
    fig.add_trace(
        go.Scatter(
            x=sm.ProbPlot(Resud_std).theoretical_quantiles,
            y=sm.ProbPlot(Resud_std).sample_quantiles,
            mode="markers",
            marker=dict(size=5, color="#11B6BD"),
            name="QQ Plot",
        )
    )

    # Add the 45-degree reference line
    diagonal_line = go.Scatter(
        x=[
            -2,
            2,
        ],  # Adjust the x values as needed to fit the range of your data
        y=[-2, 2],  # Adjust the y values accordingly
        mode="lines",
        line=dict(color="red"),  # Customize the line color and style
        name=" ",
    )
    fig.add_trace(diagonal_line)

    # Customize the layout
    fig.update_layout(
        title="QQ Plot of Residuals",
        title_x=0.5,
        autosize=False,
        width=600,
        height=400,
        xaxis_title="Theoretical Quantiles",
        yaxis_title="Sample Quantiles",
    )

    return fig


def get_random_effects(media_data, panel_col, mdf):
    random_eff_df = pd.DataFrame(columns=[panel_col, "random_effect"])
    for i, market in enumerate(media_data[panel_col].unique()):
        print(i, end="\r")
        intercept = mdf.random_effects[market].values[0]
        random_eff_df.loc[i, "random_effect"] = intercept
        random_eff_df.loc[i, panel_col] = market

    return random_eff_df


def mdf_predict(X_df, mdf, random_eff_df):
    X = X_df.copy()
    X = pd.merge(
        X,
        random_eff_df[[panel_col, "random_effect"]],
        on=panel_col,
        how="left",
    )
    X["pred_fixed_effect"] = mdf.predict(X)

    X["pred"] = X["pred_fixed_effect"] + X["random_effect"]
    X.drop(columns=["pred_fixed_effect", "random_effect"], inplace=True)
    return X


def metrics_df_panel(model_dict, is_panel):
    def wmape(actual, forecast):
        # Weighted MAPE (WMAPE) eliminates the following shortcomings of MAPE & SMAPE
        ## 1. MAPE becomes insanely high when actual is close to 0
        ## 2. MAPE is more favourable to underforecast than overforecast
        return np.sum(np.abs(actual - forecast)) / np.sum(np.abs(actual))

    metrics_df = pd.DataFrame(
        columns=[
            "Model",
            "R2",
            "ADJR2",
            "Train Mape",
            "Test Mape",
            "Summary",
            "Model_object",
        ]
    )
    i = 0
    for key in model_dict.keys():
        target = key.split("__")[1]
        metrics_df.at[i, "Model"] = target
        y = model_dict[key]["X_train_tuned"][target]

        feature_set = model_dict[key]["feature_set"]

        if is_panel:
            random_df = get_random_effects(
                media_data, panel_col, model_dict[key]["Model_object"]
            )
            pred = mdf_predict(
                model_dict[key]["X_train_tuned"],
                model_dict[key]["Model_object"],
                random_df,
            )["pred"]
        else:
            pred = model_dict[key]["Model_object"].predict(
                model_dict[key]["X_train_tuned"][feature_set]
            )

        ytest = model_dict[key]["X_test_tuned"][target]
        if is_panel:

            predtest = mdf_predict(
                model_dict[key]["X_test_tuned"],
                model_dict[key]["Model_object"],
                random_df,
            )["pred"]

        else:
            predtest = model_dict[key]["Model_object"].predict(
                model_dict[key]["X_test_tuned"][feature_set]
            )

        metrics_df.at[i, "R2"] = r2_score(y, pred)
        metrics_df.at[i, "ADJR2"] = 1 - (1 - metrics_df.loc[i, "R2"]) * (len(y) - 1) / (
            len(y) - len(model_dict[key]["feature_set"]) - 1
        )
        # metrics_df.at[i, "Train Mape"] = mean_absolute_percentage_error(y, pred)
        # metrics_df.at[i, "Test Mape"] = mean_absolute_percentage_error(
        #     ytest, predtest
        # )
        metrics_df.at[i, "Train Mape"] = wmape(y, pred)
        metrics_df.at[i, "Test Mape"] = wmape(ytest, predtest)
        metrics_df.at[i, "Summary"] = model_dict[key]["Model_object"].summary()
        metrics_df.at[i, "Model_object"] = model_dict[key]["Model_object"]
        i += 1
    metrics_df = np.round(metrics_df, 2)

    metrics_df.rename(
        columns={"R2": "R-squared", "ADJR2": "Adj. R-squared"}, inplace=True
    )
    return metrics_df


def map_channel(transformed_var, channel_dict):
    for key, value_list in channel_dict.items():
        if any(raw_var in transformed_var for raw_var in value_list):
            return key
    return transformed_var  # Return the original value if no match is found


def contributions_nonpanel(model_dict):
    # with open(os.path.join(st.session_state["project_path"], "channel_groups.pkl"), "rb") as f:
    #     channels = pickle.load(f)

    channels = st.session_state["project_dct"]["data_import"]["group_dict"]  # db
    media_data = st.session_state["media_data"]
    contribution_df = pd.DataFrame(columns=["Channel"])

    for key in model_dict.keys():

        best_feature_set = model_dict[key]["feature_set"]
        model = model_dict[key]["Model_object"]
        target = key.split("__")[1]
        X_train = model_dict[key]["X_train_tuned"]
        contri_df = pd.DataFrame()
        y = []
        y_pred = []

        coef_df = pd.DataFrame(model.params)
        coef_df.reset_index(inplace=True)
        coef_df.columns = ["feature", "coef"]
        x_train_contribution = X_train.copy()
        x_train_contribution["pred"] = model.predict(X_train[best_feature_set])

        for i in range(len(coef_df)):

            coef = coef_df.loc[i, "coef"]
            col = coef_df.loc[i, "feature"]
            if col != "const":
                x_train_contribution[str(col) + "_contr"] = (
                    coef * x_train_contribution[col]
                )
            else:
                x_train_contribution["const"] = coef

        tuning_cols = [
            c
            for c in x_train_contribution.filter(regex="contr").columns
            if c
            in [
                "day_of_week_contr",
                "Trend_contr",
                "sine_wave_contr",
                "cosine_wave_contr",
            ]
        ]
        flag_cols = [
            c
            for c in x_train_contribution.filter(regex="contr").columns
            if "_flag" in c
        ]

        # add exogenous contribution to base
        all_exog_vars = st.session_state["bin_dict"]["Exogenous"]
        all_exog_vars = [
            var.lower()
            .replace(".", "_")
            .replace("@", "_")
            .replace(" ", "_")
            .replace("-", "")
            .replace(":", "")
            .replace("__", "_")
            for var in all_exog_vars
        ]
        exog_cols = []
        if len(all_exog_vars) > 0:
            for col in x_train_contribution.filter(regex="contr").columns:
                if len([exog_var for exog_var in all_exog_vars if exog_var in col]) > 0:
                    exog_cols.append(col)

        base_cols = ["const"] + flag_cols + tuning_cols + exog_cols

        x_train_contribution["base_contr"] = x_train_contribution[base_cols].sum(axis=1)
        x_train_contribution.drop(columns=base_cols, inplace=True)

        contri_df = pd.DataFrame(x_train_contribution.filter(regex="contr").sum(axis=0))

        contri_df.reset_index(inplace=True)
        contri_df.columns = ["Channel", target]
        contri_df["Channel"] = contri_df["Channel"].apply(
            lambda x: map_channel(x, channels)
        )
        contri_df[target] = 100 * contri_df[target] / contri_df[target].sum()
        contri_df["Channel"].replace("base_contr", "base", inplace=True)
        contribution_df = pd.merge(
            contribution_df, contri_df, on="Channel", how="outer"
        )

    return contribution_df


def contributions_panel(model_dict):
    channels = st.session_state["project_dct"]["data_import"]["group_dict"]  # db
    media_data = st.session_state["media_data"]
    contribution_df = pd.DataFrame(columns=["Channel"])
    for key in model_dict.keys():
        best_feature_set = model_dict[key]["feature_set"]
        model = model_dict[key]["Model_object"]
        target = key.split("__")[1]
        X_train = model_dict[key]["X_train_tuned"]
        contri_df = pd.DataFrame()

        y = []
        y_pred = []

        random_eff_df = get_random_effects(media_data, panel_col, model)
        random_eff_df["fixed_effect"] = model.fe_params["Intercept"]
        random_eff_df["panel_effect"] = (
            random_eff_df["random_effect"] + random_eff_df["fixed_effect"]
        )

        coef_df = pd.DataFrame(model.fe_params)
        coef_df.reset_index(inplace=True)
        coef_df.columns = ["feature", "coef"]

        x_train_contribution = X_train.copy()
        x_train_contribution = mdf_predict(x_train_contribution, model, random_eff_df)

        x_train_contribution = pd.merge(
            x_train_contribution,
            random_eff_df[[panel_col, "panel_effect"]],
            on=panel_col,
            how="left",
        )
        for i in range(len(coef_df)):
            coef = coef_df.loc[i, "coef"]
            col = coef_df.loc[i, "feature"]
            if col.lower() != "intercept":
                x_train_contribution[str(col) + "_contr"] = (
                    coef * x_train_contribution[col]
                )

        # x_train_contribution['sum_contributions'] = x_train_contribution.filter(regex="contr").sum(axis=1)
        # x_train_contribution['sum_contributions'] = x_train_contribution['sum_contributions'] + x_train_contribution[
        #     'panel_effect']

        # base_cols = ["panel_effect"] + [
        #     c
        #     for c in x_train_contribution.filter(regex="contr").columns
        #     if c
        #     in [
        #         "day_of_week_contr",
        #         "Trend_contr",
        #         "sine_wave_contr",
        #         "cosine_wave_contr",
        #     ]
        # ]
        tuning_cols = [
            c
            for c in x_train_contribution.filter(regex="contr").columns
            if c
            in [
                "day_of_week_contr",
                "Trend_contr",
                "sine_wave_contr",
                "cosine_wave_contr",
            ]
        ]
        flag_cols = [
            c
            for c in x_train_contribution.filter(regex="contr").columns
            if "_flag" in c
        ]

        # add exogenous contribution to base
        all_exog_vars = st.session_state["bin_dict"]["Exogenous"]
        all_exog_vars = [
            var.lower()
            .replace(".", "_")
            .replace("@", "_")
            .replace(" ", "_")
            .replace("-", "")
            .replace(":", "")
            .replace("__", "_")
            for var in all_exog_vars
        ]
        exog_cols = []
        if len(all_exog_vars) > 0:
            for col in x_train_contribution.filter(regex="contr").columns:
                if len([exog_var for exog_var in all_exog_vars if exog_var in col]) > 0:
                    exog_cols.append(col)

        base_cols = ["panel_effect"] + flag_cols + tuning_cols + exog_cols

        x_train_contribution["base_contr"] = x_train_contribution[base_cols].sum(axis=1)
        x_train_contribution.drop(columns=base_cols, inplace=True)

        contri_df = pd.DataFrame(x_train_contribution.filter(regex="contr").sum(axis=0))
        contri_df.reset_index(inplace=True)
        contri_df.columns = ["Channel", target]

        contri_df[target] = 100 * contri_df[target] / contri_df[target].sum()
        contri_df["Channel"] = contri_df["Channel"].apply(
            lambda x: map_channel(x, channels)
        )

        contri_df["Channel"].replace("base_contr", "base", inplace=True)
        contribution_df = pd.merge(
            contribution_df, contri_df, on="Channel", how="outer"
        )
    # st.session_state["contribution_df"] = contributions_panel(tuned_model_dict)
    return contribution_df


def create_grouped_bar_plot(contribution_df, contribution_selections):
    # Extract the 'Channel' names
    channel_names = contribution_df["Channel"].tolist()

    # Dictionary to store all contributions except 'const' and 'base'
    all_contributions = {
        name: [] for name in channel_names if name not in ["const", "base"]
    }

    # Dictionary to store base sales for each selection
    base_sales_dict = {}

    # Accumulate contributions for each channel from each selection
    for selection in contribution_selections:
        contributions = contribution_df[selection].values.astype(float)
        base_sales = 0  # Initialize base sales for the current selection

        for channel_name, contribution in zip(channel_names, contributions):
            if channel_name in all_contributions:
                all_contributions[channel_name].append(contribution)
            elif channel_name == "base":
                base_sales = (
                    contribution  # Capture base sales for the current selection
                )

        # Store base sales for each selection
        base_sales_dict[selection] = base_sales

    # Calculate the average of contributions and sort by this average
    sorted_channels = sorted(all_contributions.items(), key=lambda x: -np.mean(x[1]))
    sorted_channel_names = [name for name, _ in sorted_channels]
    sorted_channel_names = [
        "Base Sales"
    ] + sorted_channel_names  # Adding 'Base Sales' at the start

    trace_data = []
    max_value = 0  # Initialize max_value to find the highest bar for y-axis adjustment

    # Create traces for the grouped bar chart
    for i, selection in enumerate(contribution_selections):
        display_name = sorted_channel_names
        display_contribution = [base_sales_dict[selection]] + [
            all_contributions[name][i] for name in sorted_channel_names[1:]
        ]  # Start with base sales for the current selection

        # Generating text labels for each bar
        text_values = [
            f"{val}%" for val in np.round(display_contribution, 0).astype(int)
        ]

        # Find the max value for y-axis calculation
        max_contribution = max(display_contribution)
        if max_contribution > max_value:
            max_value = max_contribution

        # Create a bar trace for each selection
        trace = go.Bar(
            x=display_name,
            y=display_contribution,
            name=selection,
            text=text_values,
            textposition="outside",
        )
        trace_data.append(trace)

    # Define layout for the bar chart
    layout = go.Layout(
        title="Metrics Contribution by Channel (Train)",
        xaxis=dict(title="Channel Name"),
        yaxis=dict(
            title="Metrics Contribution", range=[0, max_value * 1.2]
        ),  # Set y-axis 20% higher than the max bar
        barmode="group",
        plot_bgcolor="white",
    )

    # Create the figure with trace data and layout
    fig = go.Figure(data=trace_data, layout=layout)

    return fig


def preprocess_and_plot(contribution_df, contribution_selections):
    # Extract the 'Channel' names
    channel_names = contribution_df["Channel"].tolist()

    # Dictionary to store all contributions except 'const' and 'base'
    all_contributions = {
        name: [] for name in channel_names if name not in ["const", "base"]
    }

    # Dictionary to store base sales for each selection
    base_sales_dict = {}

    # Accumulate contributions for each channel from each selection
    for selection in contribution_selections:
        contributions = contribution_df[selection].values.astype(float)
        base_sales = 0  # Initialize base sales for the current selection

        for channel_name, contribution in zip(channel_names, contributions):
            if channel_name in all_contributions:
                all_contributions[channel_name].append(contribution)
            elif channel_name == "base":
                base_sales = (
                    contribution  # Capture base sales for the current selection
                )

        # Store base sales for each selection
        base_sales_dict[selection] = base_sales

    # Calculate the average of contributions and sort by this average
    sorted_channels = sorted(all_contributions.items(), key=lambda x: -np.mean(x[1]))
    sorted_channel_names = [name for name, _ in sorted_channels]
    sorted_channel_names = [
        "Base Sales"
    ] + sorted_channel_names  # Adding 'Base Sales' at the start

    # Initialize a Plotly figure
    fig = go.Figure()

    for i, selection in enumerate(contribution_selections):
        display_name = ["Base Sales"] + sorted_channel_names[
            1:
        ]  # Channel names for the plot
        display_contribution = [
            base_sales_dict[selection]
        ]  # Start with base sales for the current selection

        # Append average contributions for other channels
        for name in sorted_channel_names[1:]:
            display_contribution.append(all_contributions[name][i])

        # Generating text labels for each bar
        text_values = [
            f"{val}%" for val in np.round(display_contribution, 0).astype(int)
        ]

        # Add a waterfall trace for each selection
        fig.add_trace(
            go.Waterfall(
                orientation="v",
                measure=["relative"] * len(display_contribution),
                x=display_name,
                text=text_values,
                textposition="outside",
                y=display_contribution,
                increasing={"marker": {"color": "green"}},
                decreasing={"marker": {"color": "red"}},
                totals={"marker": {"color": "blue"}},
                name=selection,
            )
        )

    # Update layout of the figure
    fig.update_layout(
        title="Metrics Contribution by Channel (Train)",
        xaxis={"title": "Channel Name"},
        yaxis=dict(title="Metrics Contribution", range=[0, 100 * 1.2]),
    )

    return fig


def selection_change():
    edited_rows: dict = st.session_state.project_selection["edited_rows"]
    st.session_state["selected_row_index_gd_table"] = next(iter(edited_rows))
    st.session_state["gd_table"] = st.session_state["gd_table"].assign(selected=False)

    update_dict = {idx: values for idx, values in edited_rows.items()}

    st.session_state["gd_table"].update(
        pd.DataFrame.from_dict(update_dict, orient="index")
    )


if "username" not in st.session_state:
    st.session_state["username"] = None

if "project_name" not in st.session_state:
    st.session_state["project_name"] = None

if "project_dct" not in st.session_state:
    project_selection()
    st.stop()

try:
    st.session_state["bin_dict"] = st.session_state["project_dct"]["data_import"][
        "category_dict"
    ]  # db

except Exception as e:
    st.warning("Save atleast one tuned model to proceed")
    log_message("warning", "No tuned models available", "AI Model Results")
    st.stop()


if "gd_table" not in st.session_state:
    st.session_state["gd_table"] = pd.DataFrame()

try:
    if "username" in st.session_state and st.session_state["username"] is not None:

        if (
            retrieve_pkl_object(
                st.session_state["project_number"],
                "Model_Tuning",
                "tuned_model",
                schema,
            )
            is None
        ):

            st.error("Please save a tuned model")
            st.stop()

        if (
            "session_state_saved"
            in st.session_state["project_dct"]["model_tuning"].keys()
            and st.session_state["project_dct"]["model_tuning"]["session_state_saved"]
            != []
        ):
            for key in ["used_response_metrics", "media_data", "bin_dict"]:
                if key not in st.session_state:
                    st.session_state[key] = st.session_state["project_dct"][
                        "model_tuning"
                    ]["session_state_saved"][key]
                # st.session_state["bin_dict"] = st.session_state["project_dct"][
                #     "model_build"
                # ]["session_state_saved"]["bin_dict"]

        media_data = st.session_state["media_data"]

        # st.write(media_data.columns)

        # set the panel column
        panel_col = "panel"
        is_panel = (
            True if st.session_state["media_data"][panel_col].nunique() > 1 else False
        )
        # st.write(is_panel)

        date_col = "date"

        transformed_data = st.session_state["project_dct"]["transformations"][
            "final_df"
        ]  # db
        tuned_model_dict = retrieve_pkl_object(
            st.session_state["project_number"], "Model_Tuning", "tuned_model", schema
        )  # db

        feature_set_dct = {
            key.split("__")[1]: key_dict["feature_set"]
            for key, key_dict in tuned_model_dict.items()
        }

        # """ the above part should be modified so that we are fetching features set from the saved model"""

        if "contribution_df" not in st.session_state:
            st.session_state["contribution_df"] = None

        metrics_table = metrics_df_panel(tuned_model_dict, is_panel)

        cols1 = st.columns([2, 1])
        with cols1[0]:
            st.markdown(f"**Welcome {st.session_state['username']}**")
        with cols1[1]:
            st.markdown(f"**Current Project: {st.session_state['project_name']}**")

        st.title("AI Model Validation")

        st.header("Contribution Overview")

        # Get list of response metrics
        st.session_state["used_response_metrics"] = list(
            set([model.split("__")[1] for model in tuned_model_dict.keys()])
        )
        options = st.session_state["used_response_metrics"]

        if len(options) == 0:
            st.error("Please save and tune a model")
            st.stop()
        options = [
            opt.lower()
            .replace(" ", "_")
            .replace("-", "")
            .replace(":", "")
            .replace("__", "_")
            for opt in options
        ]

        default_options = (
            st.session_state["project_dct"]["saved_model_results"].get(
                "selected_options"
            )
            if st.session_state["project_dct"]["saved_model_results"].get(
                "selected_options"
            )
            is not None
            else [options[-1]]
        )
        for i in default_options:
            if i not in options:
                # st.write(i)
                default_options.remove(i)

        def remove_response_metric(name):
            # Convert the name to a lowercase string and remove any leading or trailing spaces
            name_str = str(name).lower().strip()

            # Check if the name starts with "response metric" or "response_metric"
            if name_str.startswith("response metric"):
                return name[len("response metric") :].replace("_", " ").strip().title()
            elif name_str.startswith("response_metric"):
                return name[len("response_metric") :].replace("_", " ").strip().title()
            else:
                return name

        contribution_selections = st.multiselect(
            "Select the Response Metrics to compare contributions",
            options,
            default=default_options,
            format_func=remove_response_metric,
        )
        trace_data = []

        if is_panel:
            st.session_state["contribution_df"] = contributions_panel(tuned_model_dict)

        else:
            st.session_state["contribution_df"] = contributions_nonpanel(
                tuned_model_dict
            )

        # st.write(st.session_state["contribution_df"].columns)
        # for selection in contribution_selections:

        #     trace = go.Bar(
        #         x=st.session_state["contribution_df"]["Channel"],
        #         y=st.session_state["contribution_df"][selection],
        #         name=selection,
        #         text=np.round(st.session_state["contribution_df"][selection], 0)
        #         .astype(int)
        #         .astype(str)
        #         + "%",
        #         textposition="outside",
        #     )
        #     trace_data.append(trace)

        # layout = go.Layout(
        #     title="Metrics Contribution by Channel",
        #     xaxis=dict(title="Channel Name"),
        #     yaxis=dict(title="Metrics Contribution"),
        #     barmode="group",
        # )
        # fig = go.Figure(data=trace_data, layout=layout)
        # st.plotly_chart(fig, use_container_width=True)

        # Display the chart in Streamlit
        st.plotly_chart(
            create_grouped_bar_plot(
                st.session_state["contribution_df"], contribution_selections
            ),
            use_container_width=True,
        )

        ############################################ Waterfall Chart ############################################

        import plotly.graph_objects as go

        st.plotly_chart(
            preprocess_and_plot(
                st.session_state["contribution_df"], contribution_selections
            ),
            use_container_width=True,
        )

        ############################################ Waterfall Chart ############################################
        st.header("Analysis of Models Result")
        gd_table = metrics_table.iloc[:, :-2]
        target_column = gd_table.at[0, "Model"]  # sprint8
        st.session_state["gd_table"] = gd_table

        with st.container():
            table = st.data_editor(
                st.session_state["gd_table"],
                hide_index=True,
                # on_change=selection_change,
                key="project_selection",
                use_container_width=True,
            )

        target_column = st.selectbox(
            "Select a Model to analyse its results",
            options=st.session_state.used_response_metrics,
            placeholder=options[0],
        )
        feature_set = feature_set_dct[target_column]

        model = metrics_table[metrics_table["Model"] == target_column][
            "Model_object"
        ].iloc[0]
        target = metrics_table[metrics_table["Model"] == target_column]["Model"].iloc[0]
        st.header("Model Summary")
        st.write(model.summary())

        sel_dict = tuned_model_dict[
            [k for k in tuned_model_dict.keys() if k.split("__")[1] == target][0]
        ]

        feature_set = sel_dict["feature_set"]
        X_train = sel_dict["X_train_tuned"]
        y_train = X_train[target]

        if is_panel:
            random_effects = get_random_effects(media_data, panel_col, model)
            pred = mdf_predict(X_train, model, random_effects)["pred"]
        else:
            pred = model.predict(X_train[feature_set])

        X_test = sel_dict["X_test_tuned"]
        y_test = X_test[target]
        if is_panel:
            predtest = mdf_predict(X_test, model, random_effects)["pred"]
        else:
            predtest = model.predict(X_test[feature_set])

        metrics_table_train, _, fig_train = plot_actual_vs_predicted(
            X_train[date_col],
            y_train,
            pred,
            model,
            target_column=target,
            flag=None,
            repeat_all_years=False,
            is_panel=is_panel,
        )

        metrics_table_test, _, fig_test = plot_actual_vs_predicted(
            X_test[date_col],
            y_test,
            predtest,
            model,
            target_column=target,
            flag=None,
            repeat_all_years=False,
            is_panel=is_panel,
        )

        metrics_table_train = metrics_table_train.set_index("Metric").transpose()
        metrics_table_train.index = ["Train"]
        metrics_table_test = metrics_table_test.set_index("Metric").transpose()
        metrics_table_test.index = ["Test"]
        metrics_table = np.round(
            pd.concat([metrics_table_train, metrics_table_test]), 2
        )

        st.markdown("Result Overview")
        st.dataframe(np.round(metrics_table, 2), use_container_width=True)

        st.header("Model Accuracy")
        st.subheader("Actual vs Predicted Plot (Train)")

        st.plotly_chart(fig_train, use_container_width=True)
        st.subheader("Actual vs Predicted Plot (Test)")
        st.plotly_chart(fig_test, use_container_width=True)

        st.markdown("## Residual Analysis (Train)")
        columns = st.columns(2)

        Xtrain1 = X_train.copy()
        with columns[0]:
            fig = plot_residual_predicted(y_train, pred, Xtrain1)
            st.plotly_chart(fig)

        with columns[1]:
            st.empty()
            fig = qqplot(y_train, pred)
            st.plotly_chart(fig)

        with columns[0]:
            fig = residual_distribution(y_train, pred)
            st.pyplot(fig)

        if st.button("Save this session", use_container_width=True):
            project_dct_pkl = pickle.dumps(st.session_state["project_dct"])

            update_db(
                st.session_state["project_number"],
                "AI_Model_Results",
                "project_dct",
                project_dct_pkl,
                schema,
                # resp_mtrc=None,
            )  # db

            log_message("info", "Session saved!", "AI Model Results")
            st.success("Session Saved!")
except:
    exc_type, exc_value, exc_traceback = sys.exc_info()
    error_message = "".join(
        traceback.format_exception(exc_type, exc_value, exc_traceback)
    )
    log_message("error", f"Error: {error_message}", "AI Model Results")
    st.warning("An error occured, please try again", icon="⚠️")