Spaces:
Sleeping
Sleeping
File size: 50,145 Bytes
00b00eb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 |
# Importing necessary libraries
import streamlit as st
st.set_page_config(
page_title="AI Model Transformations",
page_icon="โ๏ธ",
layout="wide",
initial_sidebar_state="collapsed",
)
import sys
import pickle
import traceback
import numpy as np
import pandas as pd
import plotly.graph_objects as go
from post_gres_cred import db_cred
from log_application import log_message
from utilities import (
set_header,
load_local_css,
update_db,
project_selection,
delete_entries,
retrieve_pkl_object,
)
from constants import (
predefined_defaults,
lead_min_value,
lead_max_value,
lead_step,
lag_min_value,
lag_max_value,
lag_step,
moving_average_min_value,
moving_average_max_value,
moving_average_step,
saturation_min_value,
saturation_max_value,
saturation_step,
power_min_value,
power_max_value,
power_step,
adstock_min_value,
adstock_max_value,
adstock_step,
display_max_col,
)
schema = db_cred["schema"]
load_local_css("styles.css")
set_header()
# Initialize project name session state
if "project_name" not in st.session_state:
st.session_state["project_name"] = None
# Fetch project dictionary
if "project_dct" not in st.session_state:
project_selection()
st.stop()
# Display Username and Project Name
if "username" in st.session_state and st.session_state["username"] is not None:
cols1 = st.columns([2, 1])
with cols1[0]:
st.markdown(f"**Welcome {st.session_state['username']}**")
with cols1[1]:
st.markdown(f"**Current Project: {st.session_state['project_name']}**")
# Load saved data from project dictionary
if st.session_state["project_dct"]["data_import"]["imputed_tool_df"] is None:
st.warning(
"The data import is incomplete. Please go back to the Data Import page and complete the save.",
icon="๐",
)
# Log message
log_message(
"warning",
"The data import is incomplete. Please go back to the Data Import page and complete the save.",
"Transformations",
)
st.stop()
else:
final_df_loaded = st.session_state["project_dct"]["data_import"][
"imputed_tool_df"
].copy()
bin_dict_loaded = st.session_state["project_dct"]["data_import"][
"category_dict"
].copy()
unique_panels = st.session_state["project_dct"]["data_import"][
"unique_panels"
].copy()
# Initialize project dictionary data
if st.session_state["project_dct"]["transformations"]["final_df"] is None:
st.session_state["project_dct"]["transformations"][
"final_df"
] = final_df_loaded # Default as original dataframe
# Extract original columns for specified categories
original_columns = {
category: bin_dict_loaded[category]
for category in ["Media", "Internal", "Exogenous"]
if category in bin_dict_loaded
}
# Retrive Panel columns
panel = ["panel"] if len(unique_panels) > 1 else []
# Function to clear model metadata
def clear_pages():
# Reset Pages
st.session_state["project_dct"]["model_build"] = {
"sel_target_col": None,
"all_iters_check": False,
"iterations": 0,
"build_button": False,
"show_results_check": False,
"session_state_saved": {},
}
st.session_state["project_dct"]["model_tuning"] = {
"sel_target_col": None,
"sel_model": {},
"flag_expander": False,
"start_date_default": None,
"end_date_default": None,
"repeat_default": "No",
"flags": {},
"select_all_flags_check": {},
"selected_flags": {},
"trend_check": False,
"week_num_check": False,
"sine_cosine_check": False,
"session_state_saved": {},
}
st.session_state["project_dct"]["saved_model_results"] = {
"selected_options": None,
"model_grid_sel": [1],
}
if "model_results_df" in st.session_state:
del st.session_state["model_results_df"]
if "model_results_data" in st.session_state:
del st.session_state["model_results_data"]
if "coefficients_df" in st.session_state:
del st.session_state["coefficients_df"]
# Function to update transformation change
def transformation_change(category, transformation, key):
st.session_state["project_dct"]["transformations"][category][transformation] = (
st.session_state[key]
)
# Function to update specific transformation change
def transformation_specific_change(channel_name, transformation, key):
st.session_state["project_dct"]["transformations"]["Specific"][transformation][
channel_name
] = st.session_state[key]
# Function to update transformations to apply change
def transformations_to_apply_change(category, key):
st.session_state["project_dct"]["transformations"][category][key] = (
st.session_state[key]
)
# Function to update channel select specific change
def channel_select_specific_change():
st.session_state["project_dct"]["transformations"]["Specific"][
"channel_select_specific"
] = st.session_state["channel_select_specific"]
# Function to update specific transformation change
def specific_transformation_change(specific_transformation_key):
st.session_state["project_dct"]["transformations"]["Specific"][
specific_transformation_key
] = st.session_state[specific_transformation_key]
# Function to build transformation widgets
def transformation_widgets(category, transform_params, date_granularity):
# Transformation Options
transformation_options = {
"Media": [
"Lag",
"Moving Average",
"Saturation",
"Power",
"Adstock",
],
"Internal": ["Lead", "Lag", "Moving Average"],
"Exogenous": ["Lead", "Lag", "Moving Average"],
}
# Define a helper function to create widgets for each transformation
def create_transformation_widgets(column, transformations):
with column:
for transformation in transformations:
transformation_key = f"{transformation}_{category}"
slider_value = st.session_state["project_dct"]["transformations"][
category
].get(transformation, predefined_defaults[transformation])
# Conditionally create widgets for selected transformations
if transformation == "Lead":
st.markdown(f"**{transformation} ({date_granularity})**")
lead = st.slider(
label="Lead periods",
min_value=lead_min_value,
max_value=lead_max_value,
step=lead_step,
value=slider_value,
key=transformation_key,
label_visibility="collapsed",
on_change=transformation_change,
args=(
category,
transformation,
transformation_key,
),
)
start = lead[0]
end = lead[1]
step = lead_step
transform_params[category][transformation] = np.arange(
start, end + step, step
)
if transformation == "Lag":
st.markdown(f"**{transformation} ({date_granularity})**")
lag = st.slider(
label="Lag periods",
min_value=lag_min_value,
max_value=lag_max_value,
step=lag_step,
value=slider_value,
key=transformation_key,
label_visibility="collapsed",
on_change=transformation_change,
args=(
category,
transformation,
transformation_key,
),
)
start = lag[0]
end = lag[1]
step = lag_step
transform_params[category][transformation] = np.arange(
start, end + step, step
)
if transformation == "Moving Average":
st.markdown(f"**{transformation} ({date_granularity})**")
window = st.slider(
label="Window size for Moving Average",
min_value=moving_average_min_value,
max_value=moving_average_max_value,
step=moving_average_step,
value=slider_value,
key=transformation_key,
label_visibility="collapsed",
on_change=transformation_change,
args=(
category,
transformation,
transformation_key,
),
)
start = window[0]
end = window[1]
step = moving_average_step
transform_params[category][transformation] = np.arange(
start, end + step, step
)
if transformation == "Saturation":
st.markdown(f"**{transformation} (%)**")
saturation_point = st.slider(
label="Saturation Percentage",
min_value=saturation_min_value,
max_value=saturation_max_value,
step=saturation_step,
value=slider_value,
key=transformation_key,
label_visibility="collapsed",
on_change=transformation_change,
args=(
category,
transformation,
transformation_key,
),
)
start = saturation_point[0]
end = saturation_point[1]
step = saturation_step
transform_params[category][transformation] = np.arange(
start, end + step, step
)
if transformation == "Power":
st.markdown(f"**{transformation}**")
power = st.slider(
label="Power",
min_value=power_min_value,
max_value=power_max_value,
step=power_step,
value=slider_value,
key=transformation_key,
label_visibility="collapsed",
on_change=transformation_change,
args=(
category,
transformation,
transformation_key,
),
)
start = power[0]
end = power[1]
step = power_step
transform_params[category][transformation] = np.arange(
start, end + step, step
)
if transformation == "Adstock":
st.markdown(f"**{transformation}**")
rate = st.slider(
label="Decay Factor",
min_value=adstock_min_value,
max_value=adstock_max_value,
step=adstock_step,
value=slider_value,
key=transformation_key,
label_visibility="collapsed",
on_change=transformation_change,
args=(
category,
transformation,
transformation_key,
),
)
start = rate[0]
end = rate[1]
step = adstock_step
adstock_range = [
round(a, 3) for a in np.arange(start, end + step, step)
]
transform_params[category][transformation] = np.array(adstock_range)
with st.expander(f"All {category} Transformations", expanded=True):
transformation_key = f"transformation_{category}"
# Select which transformations to apply
sel_transformations = st.session_state["project_dct"]["transformations"][
category
].get(transformation_key, [])
# Reset default selected channels list if options are changed
for channel in sel_transformations:
if channel not in transformation_options[category]:
(
st.session_state["project_dct"]["transformations"][category][
transformation_key
],
sel_transformations,
) = ([], [])
transformations_to_apply = st.multiselect(
label="Select transformations to apply",
options=transformation_options[category],
default=sel_transformations,
key=transformation_key,
on_change=transformations_to_apply_change,
args=(
category,
transformation_key,
),
)
# Determine the number of transformations to put in each column
transformations_per_column = (
len(transformations_to_apply) // 2 + len(transformations_to_apply) % 2
)
# Create two columns
col1, col2 = st.columns(2)
# Assign transformations to each column
transformations_col1 = transformations_to_apply[:transformations_per_column]
transformations_col2 = transformations_to_apply[transformations_per_column:]
# Create widgets in each column
create_transformation_widgets(col1, transformations_col1)
create_transformation_widgets(col2, transformations_col2)
# Define a helper function to create widgets for each specific transformation
def create_specific_transformation_widgets(
column,
transformations,
channel_name,
date_granularity,
specific_transform_params,
):
with column:
for transformation in transformations:
transformation_key = f"{transformation}_{channel_name}_specific"
if (
transformation
not in st.session_state["project_dct"]["transformations"]["Specific"]
):
st.session_state["project_dct"]["transformations"]["Specific"][
transformation
] = {}
slider_value = st.session_state["project_dct"]["transformations"][
"Specific"
][transformation].get(channel_name, predefined_defaults[transformation])
# Conditionally create widgets for selected transformations
if transformation == "Lead":
st.markdown(f"**Lead ({date_granularity})**")
lead = st.slider(
label="Lead periods",
min_value=lead_min_value,
max_value=lead_max_value,
step=lead_step,
value=slider_value,
key=transformation_key,
label_visibility="collapsed",
on_change=transformation_specific_change,
args=(
channel_name,
transformation,
transformation_key,
),
)
start = lead[0]
end = lead[1]
step = lead_step
specific_transform_params[channel_name]["Lead"] = np.arange(
start, end + step, step
)
if transformation == "Lag":
st.markdown(f"**Lag ({date_granularity})**")
lag = st.slider(
label="Lag periods",
min_value=lag_min_value,
max_value=lag_max_value,
step=lag_step,
value=slider_value,
key=transformation_key,
label_visibility="collapsed",
on_change=transformation_specific_change,
args=(
channel_name,
transformation,
transformation_key,
),
)
start = lag[0]
end = lag[1]
step = lag_step
specific_transform_params[channel_name]["Lag"] = np.arange(
start, end + step, step
)
if transformation == "Moving Average":
st.markdown(f"**Moving Average ({date_granularity})**")
window = st.slider(
label="Window size for Moving Average",
min_value=moving_average_min_value,
max_value=moving_average_max_value,
step=moving_average_step,
value=slider_value,
key=transformation_key,
label_visibility="collapsed",
on_change=transformation_specific_change,
args=(
channel_name,
transformation,
transformation_key,
),
)
start = window[0]
end = window[1]
step = moving_average_step
specific_transform_params[channel_name]["Moving Average"] = np.arange(
start, end + step, step
)
if transformation == "Saturation":
st.markdown("**Saturation (%)**")
saturation_point = st.slider(
label="Saturation Percentage",
min_value=saturation_min_value,
max_value=saturation_max_value,
step=saturation_step,
value=slider_value,
key=transformation_key,
label_visibility="collapsed",
on_change=transformation_specific_change,
args=(
channel_name,
transformation,
transformation_key,
),
)
start = saturation_point[0]
end = saturation_point[1]
step = saturation_step
specific_transform_params[channel_name]["Saturation"] = np.arange(
start, end + step, step
)
if transformation == "Power":
st.markdown("**Power**")
power = st.slider(
label="Power",
min_value=power_min_value,
max_value=power_max_value,
step=power_step,
value=slider_value,
key=transformation_key,
label_visibility="collapsed",
on_change=transformation_specific_change,
args=(
channel_name,
transformation,
transformation_key,
),
)
start = power[0]
end = power[1]
step = power_step
specific_transform_params[channel_name]["Power"] = np.arange(
start, end + step, step
)
if transformation == "Adstock":
st.markdown("**Adstock**")
rate = st.slider(
label="Decay Factor",
min_value=adstock_min_value,
max_value=adstock_max_value,
step=adstock_step,
value=slider_value,
key=transformation_key,
label_visibility="collapsed",
on_change=transformation_specific_change,
args=(
channel_name,
transformation,
transformation_key,
),
)
start = rate[0]
end = rate[1]
step = adstock_step
adstock_range = [
round(a, 3) for a in np.arange(start, end + step, step)
]
specific_transform_params[channel_name]["Adstock"] = np.array(
adstock_range
)
# Function to apply Lag transformation
def apply_lag(df, lag):
return df.shift(lag)
# Function to apply Lead transformation
def apply_lead(df, lead):
return df.shift(-lead)
# Function to apply Moving Average transformation
def apply_moving_average(df, window_size):
return df.rolling(window=window_size).mean()
# Function to apply Saturation transformation
def apply_saturation(df, saturation_percent_100):
# Convert percentage to fraction
saturation_percent = min(max(saturation_percent_100, 0.01), 99.99) / 100.0
# Get the maximum and minimum values
column_max = df.max()
column_min = df.min()
# If the data is constant, scale it directly
if column_min == column_max:
return df.apply(lambda x: x * saturation_percent)
# Compute the saturation point from the data range
saturation_point = (column_min + saturation_percent * column_max) / 2
# Calculate steepness for the saturation curve
numerator = np.log((1 / saturation_percent) - 1)
denominator = np.log(saturation_point / column_max)
steepness = numerator / denominator
# Apply the saturation transformation
transformed_series = df.apply(
lambda x: (1 / (1 + (saturation_point / (x if x != 0 else 1e-9)) ** steepness)) * x
)
return transformed_series
# Function to apply Power transformation
def apply_power(df, power):
return df**power
# Function to apply Adstock transformation
def apply_adstock(df, factor):
x = 0
# Use the walrus operator to update x iteratively with the Adstock formula
adstock_var = [x := x * factor + v for v in df]
ans = pd.Series(adstock_var, index=df.index)
return ans
# Function to generate transformed columns names
@st.cache_resource(show_spinner=False)
def generate_transformed_columns(
original_columns, transform_params, specific_transform_params
):
transformed_columns, summary = {}, {}
for category, columns in original_columns.items():
for column in columns:
transformed_columns[column] = []
summary_details = (
[]
) # List to hold transformation details for the current column
if (
column in specific_transform_params.keys()
and len(specific_transform_params[column]) > 0
):
for transformation, values in specific_transform_params[column].items():
# Generate transformed column names for each value
for value in values:
transformed_name = f"{column}@{transformation}_{value}"
transformed_columns[column].append(transformed_name)
# Format the values list as a string with commas and "and" before the last item
if len(values) > 1:
formatted_values = (
", ".join(map(str, values[:-1])) + " and " + str(values[-1])
)
else:
formatted_values = str(values[0])
# Add transformation details
summary_details.append(f"{transformation} ({formatted_values})")
else:
if category in transform_params:
for transformation, values in transform_params[category].items():
# Generate transformed column names for each value
if column not in specific_transform_params.keys():
for value in values:
transformed_name = f"{column}@{transformation}_{value}"
transformed_columns[column].append(transformed_name)
# Format the values list as a string with commas and "and" before the last item
if len(values) > 1:
formatted_values = (
", ".join(map(str, values[:-1]))
+ " and "
+ str(values[-1])
)
else:
formatted_values = str(values[0])
# Add transformation details
summary_details.append(
f"{transformation} ({formatted_values})"
)
else:
summary_details = ["No transformation selected"]
# Only add to summary if there are transformation details for the column
if summary_details:
formatted_summary = "โฎ ".join(summary_details)
# Use <strong> tags to make the column name bold
summary[column] = f"<strong>{column}</strong>: {formatted_summary}"
# Generate a comprehensive summary string for all columns
summary_items = [
f"{idx + 1}. {details}" for idx, details in enumerate(summary.values())
]
summary_string = "\n".join(summary_items)
return transformed_columns, summary_string
# Function to transform Dataframe slice
def transform_slice(
transform_params,
transformation_functions,
panel,
df,
df_slice,
category,
category_df,
):
# Iterate through each transformation and its parameters for the current category
for transformation, parameters in transform_params[category].items():
transformation_function = transformation_functions[transformation]
# Check if there is panel data to group by
if len(panel) > 0:
# Apply the transformation to each group
category_df = pd.concat(
[
df_slice.groupby(panel)
.transform(transformation_function, p)
.add_suffix(f"@{transformation}_{p}")
for p in parameters
],
axis=1,
)
# Replace all NaN or null values in category_df with 0
category_df.fillna(0, inplace=True)
# Update df_slice
df_slice = pd.concat(
[df[panel], category_df],
axis=1,
)
else:
for p in parameters:
# Apply the transformation function to each column
temp_df = df_slice.apply(
lambda x: transformation_function(x, p), axis=0
).rename(
lambda x: f"{x}@{transformation}_{p}",
axis="columns",
)
# Concatenate the transformed DataFrame slice to the category DataFrame
category_df = pd.concat([category_df, temp_df], axis=1)
# Replace all NaN or null values in category_df with 0
category_df.fillna(0, inplace=True)
# Update df_slice
df_slice = pd.concat(
[df[panel], category_df],
axis=1,
)
return category_df, df, df_slice
# Function to apply transformations to DataFrame slices based on specified categories and parameters
@st.cache_resource(show_spinner=False)
def apply_category_transformations(
df_main, bin_dict, transform_params, panel, specific_transform_params
):
# Dictionary for function mapping
transformation_functions = {
"Lead": apply_lead,
"Lag": apply_lag,
"Moving Average": apply_moving_average,
"Saturation": apply_saturation,
"Power": apply_power,
"Adstock": apply_adstock,
}
# List to collect all transformed DataFrames
transformed_dfs = []
# Iterate through each category specified in transform_params
for category in ["Media", "Exogenous", "Internal"]:
if (
category not in transform_params
or category not in bin_dict
or not transform_params[category]
):
continue # Skip categories without transformations
# Initialize category_df as an empty DataFrame
category_df = pd.DataFrame()
# Slice the DataFrame based on the columns specified in bin_dict for the current category
df_slice = df_main[bin_dict[category] + panel].copy()
# Drop the column from df_slice to skip specific transformations
df_slice = df_slice.drop(
columns=list(specific_transform_params.keys()), errors="ignore"
).copy()
category_df, df, df_slice_updated = transform_slice(
transform_params.copy(),
transformation_functions.copy(),
panel,
df_main.copy(),
df_slice.copy(),
category,
category_df.copy(),
)
# Append the transformed category DataFrame to the list if it's not empty
if not category_df.empty:
transformed_dfs.append(category_df)
# Apply channel specific transforms
for channel_specific in specific_transform_params:
# Initialize category_df as an empty DataFrame
category_df = pd.DataFrame()
df_slice_specific = df_main[[channel_specific] + panel].copy()
transform_params_specific = {
"Media": specific_transform_params[channel_specific]
}
category_df, df, df_slice_specific_updated = transform_slice(
transform_params_specific.copy(),
transformation_functions.copy(),
panel,
df_main.copy(),
df_slice_specific.copy(),
"Media",
category_df.copy(),
)
# Append the transformed category DataFrame to the list if it's not empty
if not category_df.empty:
transformed_dfs.append(category_df)
# If category_df has been modified, concatenate it with the panel and response metrics from the original DataFrame
if len(transformed_dfs) > 0:
final_df = pd.concat([df_main] + transformed_dfs, axis=1)
else:
# If no transformations were applied, use the original DataFrame
final_df = df_main
# Find columns with '@' in their names
columns_with_at = [col for col in final_df.columns if "@" in col]
# Create a set of columns to drop
columns_to_drop = set()
# Iterate through columns with '@' to find shorter names to drop
for col in columns_with_at:
base_name = col.split("@")[0]
for other_col in columns_with_at:
if other_col.startswith(base_name) and len(other_col.split("@")) > len(
col.split("@")
):
columns_to_drop.add(col)
break
# Drop the identified columns from the DataFrame
final_df.drop(columns=list(columns_to_drop), inplace=True)
return final_df
# Function to infers the granularity of the date column in a DataFrame
@st.cache_resource(show_spinner=False)
def infer_date_granularity(df):
# Find the most common difference
common_freq = pd.Series(df["date"].unique()).diff().dt.days.dropna().mode()[0]
# Map the most common difference to a granularity
if common_freq == 1:
return "daily"
elif common_freq == 7:
return "weekly"
elif 28 <= common_freq <= 31:
return "monthly"
else:
return "irregular"
# Function to clean display DataFrame
@st.cache_data(show_spinner=False)
def clean_display_df(df, display_max_col=500):
# Sort by 'panel' and 'date'
sort_columns = ["panel", "date"]
sorted_df = df.sort_values(by=sort_columns, ascending=True, na_position="first")
# Drop duplicate columns
sorted_df = sorted_df.loc[:, ~sorted_df.columns.duplicated()]
# Check if the DataFrame has more than display_max_col columns
exceeds_max_col = sorted_df.shape[1] > display_max_col
if exceeds_max_col:
# Create a new DataFrame with 'date' and 'panel' at the start
display_df = sorted_df[["date", "panel"]]
# Add the next display_max_col - 2 columns (as 'date' and 'panel' already occupy 2 columns)
additional_columns = sorted_df.columns.difference(["date", "panel"]).tolist()[
: display_max_col - 2
]
display_df = pd.concat([display_df, sorted_df[additional_columns]], axis=1)
else:
# Ensure 'date' and 'panel' are the first two columns in the final display DataFrame
column_order = ["date", "panel"] + sorted_df.columns.difference(
["date", "panel"]
).tolist()
display_df = sorted_df[column_order]
# Return the display DataFrame and whether it exceeds 500 columns
return display_df, exceeds_max_col
#########################################################################################################################################################
# User input for transformations
#########################################################################################################################################################
try:
# Page Title
st.title("AI Model Transformations")
# Infer date granularity
date_granularity = infer_date_granularity(final_df_loaded)
# Initialize the main dictionary to store the transformation parameters for each category
transform_params = {"Media": {}, "Internal": {}, "Exogenous": {}}
st.markdown("### Select Transformations to Apply")
with st.expander("Specific Media Transformations"):
# Select which transformations to apply
sel_channel_specific = st.session_state["project_dct"]["transformations"][
"Specific"
].get("channel_select_specific", [])
# Reset default selected channels list if options are changed
for channel in sel_channel_specific:
if channel not in bin_dict_loaded["Media"]:
(
st.session_state["project_dct"]["transformations"]["Specific"][
"channel_select_specific"
],
sel_channel_specific,
) = ([], [])
select_specific_channels = st.multiselect(
label="Select channel variable",
default=sel_channel_specific,
options=bin_dict_loaded["Media"],
key="channel_select_specific",
on_change=channel_select_specific_change,
max_selections=30,
)
specific_transform_params = {}
for select_specific_channel in select_specific_channels:
specific_transform_params[select_specific_channel] = {}
st.divider()
channel_name = str(select_specific_channel).replace("_", " ").title()
st.markdown(f"###### {channel_name}")
specific_transformation_key = (
f"specific_transformation_{select_specific_channel}_Media"
)
transformations_options = [
"Lag",
"Moving Average",
"Saturation",
"Power",
"Adstock",
]
# Select which transformations to apply
sel_transformations = st.session_state["project_dct"]["transformations"][
"Specific"
].get(specific_transformation_key, [])
# Reset default selected channels list if options are changed
for channel in sel_transformations:
if channel not in transformations_options:
(
st.session_state["project_dct"]["transformations"]["Specific"][
specific_transformation_key
],
sel_channel_specific,
) = ([], [])
transformations_to_apply = st.multiselect(
label="Select transformations to apply",
options=transformations_options,
default=sel_transformations,
key=specific_transformation_key,
on_change=specific_transformation_change,
args=(specific_transformation_key,),
)
# Determine the number of transformations to put in each column
transformations_per_column = (
len(transformations_to_apply) // 2 + len(transformations_to_apply) % 2
)
# Create two columns
col1, col2 = st.columns(2)
# Assign transformations to each column
transformations_col1 = transformations_to_apply[:transformations_per_column]
transformations_col2 = transformations_to_apply[transformations_per_column:]
# Create widgets in each column
create_specific_transformation_widgets(
col1,
transformations_col1,
select_specific_channel,
date_granularity,
specific_transform_params,
)
create_specific_transformation_widgets(
col2,
transformations_col2,
select_specific_channel,
date_granularity,
specific_transform_params,
)
# Create Widgets
for category in ["Media", "Internal", "Exogenous"]:
# Skip Internal
if category == "Internal":
continue
# Skip category if no column available
elif (
category not in bin_dict_loaded.keys()
or len(bin_dict_loaded[category]) == 0
):
st.info(
f"{str(category).title()} category has no column associated with it. Skipping transformation step for this category.",
icon="๐ฌ",
)
continue
transformation_widgets(category, transform_params, date_granularity)
#########################################################################################################################################################
# Apply transformations
#########################################################################################################################################################
# Reset transformation selection to default
button_col = st.columns(2)
with button_col[1]:
if st.button("Reset to Default", use_container_width=True):
st.session_state["project_dct"]["transformations"]["Media"] = {}
st.session_state["project_dct"]["transformations"]["Exogenous"] = {}
st.session_state["project_dct"]["transformations"]["Internal"] = {}
st.session_state["project_dct"]["transformations"]["Specific"] = {}
# Log message
log_message(
"info",
"All persistent selections have been reset to their default settings and cleared.",
"Transformations",
)
st.rerun()
# Apply category-based transformations to the DataFrame
with button_col[0]:
if st.button("Accept and Proceed", use_container_width=True):
with st.spinner("Applying transformations ..."):
final_df = apply_category_transformations(
final_df_loaded.copy(),
bin_dict_loaded.copy(),
transform_params.copy(),
panel.copy(),
specific_transform_params.copy(),
)
# Generate a dictionary mapping original column names to lists of transformed column names
transformed_columns_dict, summary_string = generate_transformed_columns(
original_columns, transform_params, specific_transform_params
)
# Store into transformed dataframe and summary session state
st.session_state["project_dct"]["transformations"][
"final_df"
] = final_df
st.session_state["project_dct"]["transformations"][
"summary_string"
] = summary_string
# Display success message
st.success("Transformation of the DataFrame is successful!", icon="โ
")
# Log message
log_message(
"info",
"Transformation of the DataFrame is successful!",
"Transformations",
)
#########################################################################################################################################################
# Display the transformed DataFrame and summary
#########################################################################################################################################################
# Display the transformed DataFrame in the Streamlit app
st.markdown("### Transformed DataFrame")
with st.spinner("Please wait while the transformed DataFrame is loading ..."):
final_df = st.session_state["project_dct"]["transformations"]["final_df"].copy()
# Clean display DataFrame
display_df, exceeds_max_col = clean_display_df(final_df, display_max_col)
# Check the number of columns and show only the first display_max_col if there are more
if exceeds_max_col:
# Display a info if the DataFrame has more than display_max_col columns
st.info(
f"The transformed DataFrame has more than {display_max_col} columns. Displaying only the first {display_max_col} columns.",
icon="๐ฌ",
)
# Display Final DataFrame
st.dataframe(
display_df,
hide_index=True,
column_config={
"date": st.column_config.DateColumn("date", format="YYYY-MM-DD")
},
)
# Total rows and columns
total_rows, total_columns = st.session_state["project_dct"]["transformations"][
"final_df"
].shape
st.markdown(
f"<p style='text-align: justify;'>The transformed DataFrame contains <strong>{total_rows}</strong> rows and <strong>{total_columns}</strong> columns.</p>",
unsafe_allow_html=True,
)
# Display the summary of transformations as markdown
if (
"summary_string" in st.session_state["project_dct"]["transformations"]
and st.session_state["project_dct"]["transformations"]["summary_string"]
):
with st.expander("Summary of Transformations"):
st.markdown("### Summary of Transformations")
st.markdown(
st.session_state["project_dct"]["transformations"][
"summary_string"
],
unsafe_allow_html=True,
)
#########################################################################################################################################################
# Correlation Plot
#########################################################################################################################################################
# Filter out the 'date' column
variables = [
col for col in final_df.columns if col.lower() not in ["date", "panel"]
]
with st.expander("Transformed Variable Correlation Plot"):
selected_vars = st.multiselect(
label="Choose variables for correlation plot:",
options=variables,
max_selections=30,
default=st.session_state["project_dct"]["transformations"][
"correlation_plot_selection"
],
key="correlation_plot_key",
)
# Calculate correlation
if selected_vars:
corr_df = final_df[selected_vars].corr()
# Prepare text annotations with 2 decimal places
annotations = []
for i in range(len(corr_df)):
for j in range(len(corr_df.columns)):
annotations.append(
go.layout.Annotation(
text=f"{corr_df.iloc[i, j]:.2f}",
x=corr_df.columns[j],
y=corr_df.index[i],
showarrow=False,
font=dict(color="black"),
)
)
# Plotly correlation plot using go
heatmap = go.Heatmap(
z=corr_df.values,
x=corr_df.columns,
y=corr_df.index,
colorscale="RdBu",
zmin=-1,
zmax=1,
)
layout = go.Layout(
title="Transformed Variable Correlation Plot",
xaxis=dict(title="Variables"),
yaxis=dict(title="Variables"),
width=1000,
height=1000,
annotations=annotations,
)
fig = go.Figure(data=[heatmap], layout=layout)
st.plotly_chart(fig)
else:
st.write("Please select at least one variable to plot.")
#########################################################################################################################################################
# Accept and Save
#########################################################################################################################################################
# Check for saved model
if (
retrieve_pkl_object(
st.session_state["project_number"], "Model_Build", "best_models", schema
)
is not None
): # db
st.warning(
"Saving transformations will overwrite existing ones and delete all saved models. To keep previous models, please start a new project.",
icon="โ ๏ธ",
)
if st.button("Accept and Save", use_container_width=True):
with st.spinner("Saving Changes"):
# Update correlation plot selection
st.session_state["project_dct"]["transformations"][
"correlation_plot_selection"
] = st.session_state["correlation_plot_key"]
# Clear model metadata
clear_pages()
# Update DB
update_db(
prj_id=st.session_state["project_number"],
page_nam="Transformations",
file_nam="project_dct",
pkl_obj=pickle.dumps(st.session_state["project_dct"]),
schema=schema,
)
# Clear data from DB
delete_entries(
st.session_state["project_number"],
["Model_Build", "Model_Tuning"],
db_cred,
schema,
)
# Success message
st.success("Saved Successfully!", icon="๐พ")
st.toast("Saved Successfully!", icon="๐พ")
# Log message
log_message("info", "Saved Successfully!", "Transformations")
except Exception as e:
# Capture the error details
exc_type, exc_value, exc_traceback = sys.exc_info()
error_message = "".join(
traceback.format_exception(exc_type, exc_value, exc_traceback)
)
# Log message
log_message("error", f"An error occurred: {error_message}.", "Transformations")
# Display a warning message
st.warning(
"Oops! Something went wrong. Please try refreshing the tool or creating a new project.",
icon="โ ๏ธ",
)
|