File size: 50,145 Bytes
00b00eb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
# Importing necessary libraries
import streamlit as st

st.set_page_config(
    page_title="AI Model Transformations",
    page_icon="โš–๏ธ",
    layout="wide",
    initial_sidebar_state="collapsed",
)

import sys
import pickle
import traceback
import numpy as np
import pandas as pd
import plotly.graph_objects as go
from post_gres_cred import db_cred
from log_application import log_message
from utilities import (
    set_header,
    load_local_css,
    update_db,
    project_selection,
    delete_entries,
    retrieve_pkl_object,
)
from constants import (
    predefined_defaults,
    lead_min_value,
    lead_max_value,
    lead_step,
    lag_min_value,
    lag_max_value,
    lag_step,
    moving_average_min_value,
    moving_average_max_value,
    moving_average_step,
    saturation_min_value,
    saturation_max_value,
    saturation_step,
    power_min_value,
    power_max_value,
    power_step,
    adstock_min_value,
    adstock_max_value,
    adstock_step,
    display_max_col,
)


schema = db_cred["schema"]
load_local_css("styles.css")
set_header()


# Initialize project name session state
if "project_name" not in st.session_state:
    st.session_state["project_name"] = None

# Fetch project dictionary
if "project_dct" not in st.session_state:
    project_selection()
    st.stop()

# Display Username and Project Name
if "username" in st.session_state and st.session_state["username"] is not None:

    cols1 = st.columns([2, 1])

    with cols1[0]:
        st.markdown(f"**Welcome {st.session_state['username']}**")
    with cols1[1]:
        st.markdown(f"**Current Project: {st.session_state['project_name']}**")

# Load saved data from project dictionary
if st.session_state["project_dct"]["data_import"]["imputed_tool_df"] is None:
    st.warning(
        "The data import is incomplete. Please go back to the Data Import page and complete the save.",
        icon="๐Ÿ”™",
    )

    # Log message
    log_message(
        "warning",
        "The data import is incomplete. Please go back to the Data Import page and complete the save.",
        "Transformations",
    )

    st.stop()
else:
    final_df_loaded = st.session_state["project_dct"]["data_import"][
        "imputed_tool_df"
    ].copy()
    bin_dict_loaded = st.session_state["project_dct"]["data_import"][
        "category_dict"
    ].copy()
    unique_panels = st.session_state["project_dct"]["data_import"][
        "unique_panels"
    ].copy()

# Initialize project dictionary data
if st.session_state["project_dct"]["transformations"]["final_df"] is None:
    st.session_state["project_dct"]["transformations"][
        "final_df"
    ] = final_df_loaded  # Default as original dataframe

# Extract original columns for specified categories
original_columns = {
    category: bin_dict_loaded[category]
    for category in ["Media", "Internal", "Exogenous"]
    if category in bin_dict_loaded
}

# Retrive Panel columns
panel = ["panel"] if len(unique_panels) > 1 else []


# Function to clear model metadata
def clear_pages():
    # Reset Pages
    st.session_state["project_dct"]["model_build"] = {
        "sel_target_col": None,
        "all_iters_check": False,
        "iterations": 0,
        "build_button": False,
        "show_results_check": False,
        "session_state_saved": {},
    }
    st.session_state["project_dct"]["model_tuning"] = {
        "sel_target_col": None,
        "sel_model": {},
        "flag_expander": False,
        "start_date_default": None,
        "end_date_default": None,
        "repeat_default": "No",
        "flags": {},
        "select_all_flags_check": {},
        "selected_flags": {},
        "trend_check": False,
        "week_num_check": False,
        "sine_cosine_check": False,
        "session_state_saved": {},
    }
    st.session_state["project_dct"]["saved_model_results"] = {
        "selected_options": None,
        "model_grid_sel": [1],
    }
    if "model_results_df" in st.session_state:
        del st.session_state["model_results_df"]
    if "model_results_data" in st.session_state:
        del st.session_state["model_results_data"]
    if "coefficients_df" in st.session_state:
        del st.session_state["coefficients_df"]


# Function to update transformation change
def transformation_change(category, transformation, key):
    st.session_state["project_dct"]["transformations"][category][transformation] = (
        st.session_state[key]
    )


# Function to update specific transformation change
def transformation_specific_change(channel_name, transformation, key):
    st.session_state["project_dct"]["transformations"]["Specific"][transformation][
        channel_name
    ] = st.session_state[key]


# Function to update transformations to apply change
def transformations_to_apply_change(category, key):
    st.session_state["project_dct"]["transformations"][category][key] = (
        st.session_state[key]
    )


# Function to update channel select specific change
def channel_select_specific_change():
    st.session_state["project_dct"]["transformations"]["Specific"][
        "channel_select_specific"
    ] = st.session_state["channel_select_specific"]


# Function to update specific transformation change
def specific_transformation_change(specific_transformation_key):
    st.session_state["project_dct"]["transformations"]["Specific"][
        specific_transformation_key
    ] = st.session_state[specific_transformation_key]


# Function to build transformation widgets
def transformation_widgets(category, transform_params, date_granularity):
    # Transformation Options
    transformation_options = {
        "Media": [
            "Lag",
            "Moving Average",
            "Saturation",
            "Power",
            "Adstock",
        ],
        "Internal": ["Lead", "Lag", "Moving Average"],
        "Exogenous": ["Lead", "Lag", "Moving Average"],
    }

    # Define a helper function to create widgets for each transformation
    def create_transformation_widgets(column, transformations):
        with column:
            for transformation in transformations:
                transformation_key = f"{transformation}_{category}"

                slider_value = st.session_state["project_dct"]["transformations"][
                    category
                ].get(transformation, predefined_defaults[transformation])

                # Conditionally create widgets for selected transformations
                if transformation == "Lead":
                    st.markdown(f"**{transformation} ({date_granularity})**")

                    lead = st.slider(
                        label="Lead periods",
                        min_value=lead_min_value,
                        max_value=lead_max_value,
                        step=lead_step,
                        value=slider_value,
                        key=transformation_key,
                        label_visibility="collapsed",
                        on_change=transformation_change,
                        args=(
                            category,
                            transformation,
                            transformation_key,
                        ),
                    )

                    start = lead[0]
                    end = lead[1]
                    step = lead_step
                    transform_params[category][transformation] = np.arange(
                        start, end + step, step
                    )

                if transformation == "Lag":
                    st.markdown(f"**{transformation} ({date_granularity})**")

                    lag = st.slider(
                        label="Lag periods",
                        min_value=lag_min_value,
                        max_value=lag_max_value,
                        step=lag_step,
                        value=slider_value,
                        key=transformation_key,
                        label_visibility="collapsed",
                        on_change=transformation_change,
                        args=(
                            category,
                            transformation,
                            transformation_key,
                        ),
                    )

                    start = lag[0]
                    end = lag[1]
                    step = lag_step
                    transform_params[category][transformation] = np.arange(
                        start, end + step, step
                    )

                if transformation == "Moving Average":
                    st.markdown(f"**{transformation} ({date_granularity})**")

                    window = st.slider(
                        label="Window size for Moving Average",
                        min_value=moving_average_min_value,
                        max_value=moving_average_max_value,
                        step=moving_average_step,
                        value=slider_value,
                        key=transformation_key,
                        label_visibility="collapsed",
                        on_change=transformation_change,
                        args=(
                            category,
                            transformation,
                            transformation_key,
                        ),
                    )

                    start = window[0]
                    end = window[1]
                    step = moving_average_step
                    transform_params[category][transformation] = np.arange(
                        start, end + step, step
                    )

                if transformation == "Saturation":
                    st.markdown(f"**{transformation} (%)**")

                    saturation_point = st.slider(
                        label="Saturation Percentage",
                        min_value=saturation_min_value,
                        max_value=saturation_max_value,
                        step=saturation_step,
                        value=slider_value,
                        key=transformation_key,
                        label_visibility="collapsed",
                        on_change=transformation_change,
                        args=(
                            category,
                            transformation,
                            transformation_key,
                        ),
                    )

                    start = saturation_point[0]
                    end = saturation_point[1]
                    step = saturation_step
                    transform_params[category][transformation] = np.arange(
                        start, end + step, step
                    )

                if transformation == "Power":
                    st.markdown(f"**{transformation}**")

                    power = st.slider(
                        label="Power",
                        min_value=power_min_value,
                        max_value=power_max_value,
                        step=power_step,
                        value=slider_value,
                        key=transformation_key,
                        label_visibility="collapsed",
                        on_change=transformation_change,
                        args=(
                            category,
                            transformation,
                            transformation_key,
                        ),
                    )

                    start = power[0]
                    end = power[1]
                    step = power_step
                    transform_params[category][transformation] = np.arange(
                        start, end + step, step
                    )

                if transformation == "Adstock":
                    st.markdown(f"**{transformation}**")

                    rate = st.slider(
                        label="Decay Factor",
                        min_value=adstock_min_value,
                        max_value=adstock_max_value,
                        step=adstock_step,
                        value=slider_value,
                        key=transformation_key,
                        label_visibility="collapsed",
                        on_change=transformation_change,
                        args=(
                            category,
                            transformation,
                            transformation_key,
                        ),
                    )

                    start = rate[0]
                    end = rate[1]
                    step = adstock_step
                    adstock_range = [
                        round(a, 3) for a in np.arange(start, end + step, step)
                    ]
                    transform_params[category][transformation] = np.array(adstock_range)

    with st.expander(f"All {category} Transformations", expanded=True):

        transformation_key = f"transformation_{category}"

        # Select which transformations to apply
        sel_transformations = st.session_state["project_dct"]["transformations"][
            category
        ].get(transformation_key, [])

        # Reset default selected channels list if options are changed
        for channel in sel_transformations:
            if channel not in transformation_options[category]:
                (
                    st.session_state["project_dct"]["transformations"][category][
                        transformation_key
                    ],
                    sel_transformations,
                ) = ([], [])

        transformations_to_apply = st.multiselect(
            label="Select transformations to apply",
            options=transformation_options[category],
            default=sel_transformations,
            key=transformation_key,
            on_change=transformations_to_apply_change,
            args=(
                category,
                transformation_key,
            ),
        )

        # Determine the number of transformations to put in each column
        transformations_per_column = (
            len(transformations_to_apply) // 2 + len(transformations_to_apply) % 2
        )

        # Create two columns
        col1, col2 = st.columns(2)

        # Assign transformations to each column
        transformations_col1 = transformations_to_apply[:transformations_per_column]
        transformations_col2 = transformations_to_apply[transformations_per_column:]

        # Create widgets in each column
        create_transformation_widgets(col1, transformations_col1)
        create_transformation_widgets(col2, transformations_col2)


# Define a helper function to create widgets for each specific transformation
def create_specific_transformation_widgets(

    column,

    transformations,

    channel_name,

    date_granularity,

    specific_transform_params,

):
    with column:
        for transformation in transformations:
            transformation_key = f"{transformation}_{channel_name}_specific"

            if (
                transformation
                not in st.session_state["project_dct"]["transformations"]["Specific"]
            ):
                st.session_state["project_dct"]["transformations"]["Specific"][
                    transformation
                ] = {}

            slider_value = st.session_state["project_dct"]["transformations"][
                "Specific"
            ][transformation].get(channel_name, predefined_defaults[transformation])

            # Conditionally create widgets for selected transformations
            if transformation == "Lead":
                st.markdown(f"**Lead ({date_granularity})**")

                lead = st.slider(
                    label="Lead periods",
                    min_value=lead_min_value,
                    max_value=lead_max_value,
                    step=lead_step,
                    value=slider_value,
                    key=transformation_key,
                    label_visibility="collapsed",
                    on_change=transformation_specific_change,
                    args=(
                        channel_name,
                        transformation,
                        transformation_key,
                    ),
                )

                start = lead[0]
                end = lead[1]
                step = lead_step
                specific_transform_params[channel_name]["Lead"] = np.arange(
                    start, end + step, step
                )

            if transformation == "Lag":
                st.markdown(f"**Lag ({date_granularity})**")

                lag = st.slider(
                    label="Lag periods",
                    min_value=lag_min_value,
                    max_value=lag_max_value,
                    step=lag_step,
                    value=slider_value,
                    key=transformation_key,
                    label_visibility="collapsed",
                    on_change=transformation_specific_change,
                    args=(
                        channel_name,
                        transformation,
                        transformation_key,
                    ),
                )

                start = lag[0]
                end = lag[1]
                step = lag_step
                specific_transform_params[channel_name]["Lag"] = np.arange(
                    start, end + step, step
                )

            if transformation == "Moving Average":
                st.markdown(f"**Moving Average ({date_granularity})**")

                window = st.slider(
                    label="Window size for Moving Average",
                    min_value=moving_average_min_value,
                    max_value=moving_average_max_value,
                    step=moving_average_step,
                    value=slider_value,
                    key=transformation_key,
                    label_visibility="collapsed",
                    on_change=transformation_specific_change,
                    args=(
                        channel_name,
                        transformation,
                        transformation_key,
                    ),
                )

                start = window[0]
                end = window[1]
                step = moving_average_step
                specific_transform_params[channel_name]["Moving Average"] = np.arange(
                    start, end + step, step
                )

            if transformation == "Saturation":
                st.markdown("**Saturation (%)**")

                saturation_point = st.slider(
                    label="Saturation Percentage",
                    min_value=saturation_min_value,
                    max_value=saturation_max_value,
                    step=saturation_step,
                    value=slider_value,
                    key=transformation_key,
                    label_visibility="collapsed",
                    on_change=transformation_specific_change,
                    args=(
                        channel_name,
                        transformation,
                        transformation_key,
                    ),
                )

                start = saturation_point[0]
                end = saturation_point[1]
                step = saturation_step
                specific_transform_params[channel_name]["Saturation"] = np.arange(
                    start, end + step, step
                )

            if transformation == "Power":
                st.markdown("**Power**")

                power = st.slider(
                    label="Power",
                    min_value=power_min_value,
                    max_value=power_max_value,
                    step=power_step,
                    value=slider_value,
                    key=transformation_key,
                    label_visibility="collapsed",
                    on_change=transformation_specific_change,
                    args=(
                        channel_name,
                        transformation,
                        transformation_key,
                    ),
                )

                start = power[0]
                end = power[1]
                step = power_step
                specific_transform_params[channel_name]["Power"] = np.arange(
                    start, end + step, step
                )

            if transformation == "Adstock":
                st.markdown("**Adstock**")
                rate = st.slider(
                    label="Decay Factor",
                    min_value=adstock_min_value,
                    max_value=adstock_max_value,
                    step=adstock_step,
                    value=slider_value,
                    key=transformation_key,
                    label_visibility="collapsed",
                    on_change=transformation_specific_change,
                    args=(
                        channel_name,
                        transformation,
                        transformation_key,
                    ),
                )

                start = rate[0]
                end = rate[1]
                step = adstock_step
                adstock_range = [
                    round(a, 3) for a in np.arange(start, end + step, step)
                ]
                specific_transform_params[channel_name]["Adstock"] = np.array(
                    adstock_range
                )


# Function to apply Lag transformation
def apply_lag(df, lag):
    return df.shift(lag)


# Function to apply Lead transformation
def apply_lead(df, lead):
    return df.shift(-lead)


# Function to apply Moving Average transformation
def apply_moving_average(df, window_size):
    return df.rolling(window=window_size).mean()


# Function to apply Saturation transformation
def apply_saturation(df, saturation_percent_100):
    # Convert percentage to fraction
    saturation_percent = min(max(saturation_percent_100, 0.01), 99.99) / 100.0

    # Get the maximum and minimum values
    column_max = df.max()
    column_min = df.min()
    
    # If the data is constant, scale it directly
    if column_min == column_max:
        return df.apply(lambda x: x * saturation_percent)
    
    # Compute the saturation point from the data range
    saturation_point = (column_min + saturation_percent * column_max) / 2

    # Calculate steepness for the saturation curve
    numerator = np.log((1 / saturation_percent) - 1)
    denominator = np.log(saturation_point / column_max)
    steepness = numerator / denominator

    # Apply the saturation transformation
    transformed_series = df.apply(
        lambda x: (1 / (1 + (saturation_point / (x if x != 0 else 1e-9)) ** steepness)) * x
    )

    return transformed_series


# Function to apply Power transformation
def apply_power(df, power):
    return df**power


# Function to apply Adstock transformation
def apply_adstock(df, factor):
    x = 0
    # Use the walrus operator to update x iteratively with the Adstock formula
    adstock_var = [x := x * factor + v for v in df]
    ans = pd.Series(adstock_var, index=df.index)
    return ans


# Function to generate transformed columns names
@st.cache_resource(show_spinner=False)
def generate_transformed_columns(

    original_columns, transform_params, specific_transform_params

):
    transformed_columns, summary = {}, {}

    for category, columns in original_columns.items():
        for column in columns:
            transformed_columns[column] = []
            summary_details = (
                []
            )  # List to hold transformation details for the current column

            if (
                column in specific_transform_params.keys()
                and len(specific_transform_params[column]) > 0
            ):
                for transformation, values in specific_transform_params[column].items():
                    # Generate transformed column names for each value
                    for value in values:
                        transformed_name = f"{column}@{transformation}_{value}"
                        transformed_columns[column].append(transformed_name)

                    # Format the values list as a string with commas and "and" before the last item
                    if len(values) > 1:
                        formatted_values = (
                            ", ".join(map(str, values[:-1])) + " and " + str(values[-1])
                        )
                    else:
                        formatted_values = str(values[0])

                    # Add transformation details
                    summary_details.append(f"{transformation} ({formatted_values})")

            else:
                if category in transform_params:
                    for transformation, values in transform_params[category].items():
                        # Generate transformed column names for each value
                        if column not in specific_transform_params.keys():
                            for value in values:
                                transformed_name = f"{column}@{transformation}_{value}"
                                transformed_columns[column].append(transformed_name)

                            # Format the values list as a string with commas and "and" before the last item
                            if len(values) > 1:
                                formatted_values = (
                                    ", ".join(map(str, values[:-1]))
                                    + " and "
                                    + str(values[-1])
                                )
                            else:
                                formatted_values = str(values[0])

                            # Add transformation details
                            summary_details.append(
                                f"{transformation} ({formatted_values})"
                            )

                        else:
                            summary_details = ["No transformation selected"]

            # Only add to summary if there are transformation details for the column
            if summary_details:
                formatted_summary = "โฎ• ".join(summary_details)
                # Use <strong> tags to make the column name bold
                summary[column] = f"<strong>{column}</strong>: {formatted_summary}"

    # Generate a comprehensive summary string for all columns
    summary_items = [
        f"{idx + 1}. {details}" for idx, details in enumerate(summary.values())
    ]

    summary_string = "\n".join(summary_items)

    return transformed_columns, summary_string


# Function to transform Dataframe slice
def transform_slice(

    transform_params,

    transformation_functions,

    panel,

    df,

    df_slice,

    category,

    category_df,

):
    # Iterate through each transformation and its parameters for the current category
    for transformation, parameters in transform_params[category].items():
        transformation_function = transformation_functions[transformation]

        # Check if there is panel data to group by
        if len(panel) > 0:
            # Apply the transformation to each group
            category_df = pd.concat(
                [
                    df_slice.groupby(panel)
                    .transform(transformation_function, p)
                    .add_suffix(f"@{transformation}_{p}")
                    for p in parameters
                ],
                axis=1,
            )

            # Replace all NaN or null values in category_df with 0
            category_df.fillna(0, inplace=True)

            # Update df_slice
            df_slice = pd.concat(
                [df[panel], category_df],
                axis=1,
            )

        else:
            for p in parameters:
                # Apply the transformation function to each column
                temp_df = df_slice.apply(
                    lambda x: transformation_function(x, p), axis=0
                ).rename(
                    lambda x: f"{x}@{transformation}_{p}",
                    axis="columns",
                )
                # Concatenate the transformed DataFrame slice to the category DataFrame
                category_df = pd.concat([category_df, temp_df], axis=1)

            # Replace all NaN or null values in category_df with 0
            category_df.fillna(0, inplace=True)

            # Update df_slice
            df_slice = pd.concat(
                [df[panel], category_df],
                axis=1,
            )

    return category_df, df, df_slice


# Function to apply transformations to DataFrame slices based on specified categories and parameters
@st.cache_resource(show_spinner=False)
def apply_category_transformations(

    df_main, bin_dict, transform_params, panel, specific_transform_params

):
    # Dictionary for function mapping
    transformation_functions = {
        "Lead": apply_lead,
        "Lag": apply_lag,
        "Moving Average": apply_moving_average,
        "Saturation": apply_saturation,
        "Power": apply_power,
        "Adstock": apply_adstock,
    }

    # List to collect all transformed DataFrames
    transformed_dfs = []

    # Iterate through each category specified in transform_params
    for category in ["Media", "Exogenous", "Internal"]:
        if (
            category not in transform_params
            or category not in bin_dict
            or not transform_params[category]
        ):
            continue  # Skip categories without transformations

        # Initialize category_df as an empty DataFrame
        category_df = pd.DataFrame()

        # Slice the DataFrame based on the columns specified in bin_dict for the current category
        df_slice = df_main[bin_dict[category] + panel].copy()

        # Drop the column from df_slice to skip specific transformations
        df_slice = df_slice.drop(
            columns=list(specific_transform_params.keys()), errors="ignore"
        ).copy()

        category_df, df, df_slice_updated = transform_slice(
            transform_params.copy(),
            transformation_functions.copy(),
            panel,
            df_main.copy(),
            df_slice.copy(),
            category,
            category_df.copy(),
        )

        # Append the transformed category DataFrame to the list if it's not empty
        if not category_df.empty:
            transformed_dfs.append(category_df)

    # Apply channel specific transforms
    for channel_specific in specific_transform_params:
        # Initialize category_df as an empty DataFrame
        category_df = pd.DataFrame()

        df_slice_specific = df_main[[channel_specific] + panel].copy()
        transform_params_specific = {
            "Media": specific_transform_params[channel_specific]
        }

        category_df, df, df_slice_specific_updated = transform_slice(
            transform_params_specific.copy(),
            transformation_functions.copy(),
            panel,
            df_main.copy(),
            df_slice_specific.copy(),
            "Media",
            category_df.copy(),
        )

        # Append the transformed category DataFrame to the list if it's not empty
        if not category_df.empty:
            transformed_dfs.append(category_df)

    # If category_df has been modified, concatenate it with the panel and response metrics from the original DataFrame
    if len(transformed_dfs) > 0:
        final_df = pd.concat([df_main] + transformed_dfs, axis=1)
    else:
        # If no transformations were applied, use the original DataFrame
        final_df = df_main

    # Find columns with '@' in their names
    columns_with_at = [col for col in final_df.columns if "@" in col]

    # Create a set of columns to drop
    columns_to_drop = set()

    # Iterate through columns with '@' to find shorter names to drop
    for col in columns_with_at:
        base_name = col.split("@")[0]
        for other_col in columns_with_at:
            if other_col.startswith(base_name) and len(other_col.split("@")) > len(
                col.split("@")
            ):
                columns_to_drop.add(col)
                break

    # Drop the identified columns from the DataFrame
    final_df.drop(columns=list(columns_to_drop), inplace=True)

    return final_df


# Function to infers the granularity of the date column in a DataFrame
@st.cache_resource(show_spinner=False)
def infer_date_granularity(df):
    # Find the most common difference
    common_freq = pd.Series(df["date"].unique()).diff().dt.days.dropna().mode()[0]

    # Map the most common difference to a granularity
    if common_freq == 1:
        return "daily"
    elif common_freq == 7:
        return "weekly"
    elif 28 <= common_freq <= 31:
        return "monthly"
    else:
        return "irregular"


# Function to clean display DataFrame
@st.cache_data(show_spinner=False)
def clean_display_df(df, display_max_col=500):
    # Sort by 'panel' and 'date'
    sort_columns = ["panel", "date"]
    sorted_df = df.sort_values(by=sort_columns, ascending=True, na_position="first")

    # Drop duplicate columns
    sorted_df = sorted_df.loc[:, ~sorted_df.columns.duplicated()]

    # Check if the DataFrame has more than display_max_col columns
    exceeds_max_col = sorted_df.shape[1] > display_max_col

    if exceeds_max_col:
        # Create a new DataFrame with 'date' and 'panel' at the start
        display_df = sorted_df[["date", "panel"]]

        # Add the next display_max_col - 2 columns (as 'date' and 'panel' already occupy 2 columns)
        additional_columns = sorted_df.columns.difference(["date", "panel"]).tolist()[
            : display_max_col - 2
        ]
        display_df = pd.concat([display_df, sorted_df[additional_columns]], axis=1)
    else:
        # Ensure 'date' and 'panel' are the first two columns in the final display DataFrame
        column_order = ["date", "panel"] + sorted_df.columns.difference(
            ["date", "panel"]
        ).tolist()
        display_df = sorted_df[column_order]

    # Return the display DataFrame and whether it exceeds 500 columns
    return display_df, exceeds_max_col


#########################################################################################################################################################
# User input for transformations
#########################################################################################################################################################

try:
    # Page Title
    st.title("AI Model Transformations")

    # Infer date granularity
    date_granularity = infer_date_granularity(final_df_loaded)

    # Initialize the main dictionary to store the transformation parameters for each category
    transform_params = {"Media": {}, "Internal": {}, "Exogenous": {}}

    st.markdown("### Select Transformations to Apply")

    with st.expander("Specific Media Transformations"):
        # Select which transformations to apply
        sel_channel_specific = st.session_state["project_dct"]["transformations"][
            "Specific"
        ].get("channel_select_specific", [])

        # Reset default selected channels list if options are changed
        for channel in sel_channel_specific:
            if channel not in bin_dict_loaded["Media"]:
                (
                    st.session_state["project_dct"]["transformations"]["Specific"][
                        "channel_select_specific"
                    ],
                    sel_channel_specific,
                ) = ([], [])

        select_specific_channels = st.multiselect(
            label="Select channel variable",
            default=sel_channel_specific,
            options=bin_dict_loaded["Media"],
            key="channel_select_specific",
            on_change=channel_select_specific_change,
            max_selections=30,
        )

        specific_transform_params = {}
        for select_specific_channel in select_specific_channels:
            specific_transform_params[select_specific_channel] = {}

            st.divider()
            channel_name = str(select_specific_channel).replace("_", " ").title()
            st.markdown(f"###### {channel_name}")

            specific_transformation_key = (
                f"specific_transformation_{select_specific_channel}_Media"
            )

            transformations_options = [
                "Lag",
                "Moving Average",
                "Saturation",
                "Power",
                "Adstock",
            ]

            # Select which transformations to apply
            sel_transformations = st.session_state["project_dct"]["transformations"][
                "Specific"
            ].get(specific_transformation_key, [])

            # Reset default selected channels list if options are changed
            for channel in sel_transformations:
                if channel not in transformations_options:
                    (
                        st.session_state["project_dct"]["transformations"]["Specific"][
                            specific_transformation_key
                        ],
                        sel_channel_specific,
                    ) = ([], [])

            transformations_to_apply = st.multiselect(
                label="Select transformations to apply",
                options=transformations_options,
                default=sel_transformations,
                key=specific_transformation_key,
                on_change=specific_transformation_change,
                args=(specific_transformation_key,),
            )

            # Determine the number of transformations to put in each column
            transformations_per_column = (
                len(transformations_to_apply) // 2 + len(transformations_to_apply) % 2
            )

            # Create two columns
            col1, col2 = st.columns(2)

            # Assign transformations to each column
            transformations_col1 = transformations_to_apply[:transformations_per_column]
            transformations_col2 = transformations_to_apply[transformations_per_column:]

            # Create widgets in each column
            create_specific_transformation_widgets(
                col1,
                transformations_col1,
                select_specific_channel,
                date_granularity,
                specific_transform_params,
            )
            create_specific_transformation_widgets(
                col2,
                transformations_col2,
                select_specific_channel,
                date_granularity,
                specific_transform_params,
            )

    # Create Widgets
    for category in ["Media", "Internal", "Exogenous"]:
        # Skip Internal
        if category == "Internal":
            continue

        # Skip category if no column available
        elif (
            category not in bin_dict_loaded.keys()
            or len(bin_dict_loaded[category]) == 0
        ):
            st.info(
                f"{str(category).title()} category has no column associated with it. Skipping transformation step for this category.",
                icon="๐Ÿ’ฌ",
            )
            continue

        transformation_widgets(category, transform_params, date_granularity)

    #########################################################################################################################################################
    # Apply transformations
    #########################################################################################################################################################

    # Reset transformation selection to default
    button_col = st.columns(2)
    with button_col[1]:
        if st.button("Reset to Default", use_container_width=True):
            st.session_state["project_dct"]["transformations"]["Media"] = {}
            st.session_state["project_dct"]["transformations"]["Exogenous"] = {}
            st.session_state["project_dct"]["transformations"]["Internal"] = {}
            st.session_state["project_dct"]["transformations"]["Specific"] = {}

            # Log message
            log_message(
                "info",
                "All persistent selections have been reset to their default settings and cleared.",
                "Transformations",
            )

            st.rerun()

    # Apply category-based transformations to the DataFrame
    with button_col[0]:
        if st.button("Accept and Proceed", use_container_width=True):
            with st.spinner("Applying transformations ..."):
                final_df = apply_category_transformations(
                    final_df_loaded.copy(),
                    bin_dict_loaded.copy(),
                    transform_params.copy(),
                    panel.copy(),
                    specific_transform_params.copy(),
                )

                # Generate a dictionary mapping original column names to lists of transformed column names
                transformed_columns_dict, summary_string = generate_transformed_columns(
                    original_columns, transform_params, specific_transform_params
                )

                # Store into transformed dataframe and summary session state
                st.session_state["project_dct"]["transformations"][
                    "final_df"
                ] = final_df
                st.session_state["project_dct"]["transformations"][
                    "summary_string"
                ] = summary_string

                # Display success message
                st.success("Transformation of the DataFrame is successful!", icon="โœ…")

                # Log message
                log_message(
                    "info",
                    "Transformation of the DataFrame is successful!",
                    "Transformations",
                )

    #########################################################################################################################################################
    # Display the transformed DataFrame and summary
    #########################################################################################################################################################

    # Display the transformed DataFrame in the Streamlit app
    st.markdown("### Transformed DataFrame")
    with st.spinner("Please wait while the transformed DataFrame is loading ..."):
        final_df = st.session_state["project_dct"]["transformations"]["final_df"].copy()

        # Clean display DataFrame
        display_df, exceeds_max_col = clean_display_df(final_df, display_max_col)

        # Check the number of columns and show only the first display_max_col if there are more
        if exceeds_max_col:
            # Display a info if the DataFrame has more than display_max_col columns
            st.info(
                f"The transformed DataFrame has more than {display_max_col} columns. Displaying only the first {display_max_col} columns.",
                icon="๐Ÿ’ฌ",
            )

        # Display Final DataFrame
        st.dataframe(
            display_df,
            hide_index=True,
            column_config={
                "date": st.column_config.DateColumn("date", format="YYYY-MM-DD")
            },
        )

        # Total rows and columns
        total_rows, total_columns = st.session_state["project_dct"]["transformations"][
            "final_df"
        ].shape
        st.markdown(
            f"<p style='text-align: justify;'>The transformed DataFrame contains <strong>{total_rows}</strong> rows and <strong>{total_columns}</strong> columns.</p>",
            unsafe_allow_html=True,
        )

        # Display the summary of transformations as markdown
        if (
            "summary_string" in st.session_state["project_dct"]["transformations"]
            and st.session_state["project_dct"]["transformations"]["summary_string"]
        ):
            with st.expander("Summary of Transformations"):
                st.markdown("### Summary of Transformations")
                st.markdown(
                    st.session_state["project_dct"]["transformations"][
                        "summary_string"
                    ],
                    unsafe_allow_html=True,
                )

    #########################################################################################################################################################
    # Correlation Plot
    #########################################################################################################################################################

    # Filter out the 'date' column
    variables = [
        col for col in final_df.columns if col.lower() not in ["date", "panel"]
    ]

    with st.expander("Transformed Variable Correlation Plot"):
        selected_vars = st.multiselect(
            label="Choose variables for correlation plot:",
            options=variables,
            max_selections=30,
            default=st.session_state["project_dct"]["transformations"][
                "correlation_plot_selection"
            ],
            key="correlation_plot_key",
        )

        # Calculate correlation
        if selected_vars:
            corr_df = final_df[selected_vars].corr()

            # Prepare text annotations with 2 decimal places
            annotations = []
            for i in range(len(corr_df)):
                for j in range(len(corr_df.columns)):
                    annotations.append(
                        go.layout.Annotation(
                            text=f"{corr_df.iloc[i, j]:.2f}",
                            x=corr_df.columns[j],
                            y=corr_df.index[i],
                            showarrow=False,
                            font=dict(color="black"),
                        )
                    )

            # Plotly correlation plot using go
            heatmap = go.Heatmap(
                z=corr_df.values,
                x=corr_df.columns,
                y=corr_df.index,
                colorscale="RdBu",
                zmin=-1,
                zmax=1,
            )

            layout = go.Layout(
                title="Transformed Variable Correlation Plot",
                xaxis=dict(title="Variables"),
                yaxis=dict(title="Variables"),
                width=1000,
                height=1000,
                annotations=annotations,
            )

            fig = go.Figure(data=[heatmap], layout=layout)

            st.plotly_chart(fig)
        else:
            st.write("Please select at least one variable to plot.")

    #########################################################################################################################################################
    # Accept and Save
    #########################################################################################################################################################

    # Check for saved model
    if (
        retrieve_pkl_object(
            st.session_state["project_number"], "Model_Build", "best_models", schema
        )
        is not None
    ):  # db
        st.warning(
            "Saving transformations will overwrite existing ones and delete all saved models. To keep previous models, please start a new project.",
            icon="โš ๏ธ",
        )

    if st.button("Accept and Save", use_container_width=True):

        with st.spinner("Saving Changes"):
            # Update correlation plot selection
            st.session_state["project_dct"]["transformations"][
                "correlation_plot_selection"
            ] = st.session_state["correlation_plot_key"]

            # Clear model metadata
            clear_pages()

            # Update DB
            update_db(
                prj_id=st.session_state["project_number"],
                page_nam="Transformations",
                file_nam="project_dct",
                pkl_obj=pickle.dumps(st.session_state["project_dct"]),
                schema=schema,
            )

            # Clear data from DB
            delete_entries(
                st.session_state["project_number"],
                ["Model_Build", "Model_Tuning"],
                db_cred,
                schema,
            )

            # Success message
            st.success("Saved Successfully!", icon="๐Ÿ’พ")
            st.toast("Saved Successfully!", icon="๐Ÿ’พ")

            # Log message
            log_message("info", "Saved Successfully!", "Transformations")

except Exception as e:
    # Capture the error details
    exc_type, exc_value, exc_traceback = sys.exc_info()
    error_message = "".join(
        traceback.format_exception(exc_type, exc_value, exc_traceback)
    )

    # Log message
    log_message("error", f"An error occurred: {error_message}.", "Transformations")

    # Display a warning message
    st.warning(
        "Oops! Something went wrong. Please try refreshing the tool or creating a new project.",
        icon="โš ๏ธ",
    )