Spaces:
Sleeping
Sleeping
File size: 17,046 Bytes
00b00eb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 |
import streamlit as st
import pandas as pd
from data_analysis import *
import numpy as np
import pickle
import streamlit as st
from utilities import set_header, load_local_css, update_db, project_selection
from post_gres_cred import db_cred
from utilities import update_db
import re
st.set_page_config(
page_title="Data Assessment",
page_icon=":shark:",
layout="wide",
initial_sidebar_state="collapsed",
)
schema = db_cred["schema"]
load_local_css("styles.css")
set_header()
if "username" not in st.session_state:
st.session_state["username"] = None
if "project_name" not in st.session_state:
st.session_state["project_name"] = None
if "project_dct" not in st.session_state:
project_selection()
st.stop()
if "username" in st.session_state and st.session_state["username"] is not None:
if st.session_state["project_dct"]["data_import"]["imputed_tool_df"] is None:
st.error(f"Please import data from the Data Import Page")
st.stop()
st.session_state["cleaned_data"] = st.session_state["project_dct"]["data_import"][
"imputed_tool_df"
]
st.session_state["category_dict"] = st.session_state["project_dct"]["data_import"][
"category_dict"
]
# st.write(st.session_state['category_dict'])
cols1 = st.columns([2, 1])
with cols1[0]:
st.markdown(f"**Welcome {st.session_state['username']}**")
with cols1[1]:
st.markdown(f"**Current Project: {st.session_state['project_name']}**")
st.title("Data Assessment")
target_variables = [
st.session_state["category_dict"][key]
for key in st.session_state["category_dict"].keys()
if key == "Response Metrics"
]
def format_display(inp):
return (
inp.title()
.replace("_", " ")
.replace("Media", "")
.replace("Cnt", "")
.strip()
)
target_variables = list(*target_variables)
target_column = st.selectbox(
"Select the Target Feature/Dependent Variable (will be used in all charts as reference)",
target_variables,
index=st.session_state["project_dct"]["data_validation"]["target_column"],
format_func=format_display,
)
st.session_state["project_dct"]["data_validation"]["target_column"] = (
target_variables.index(target_column)
)
st.session_state["target_column"] = target_column
if "panel" not in st.session_state["cleaned_data"].columns:
st.write('True')
st.session_state["cleaned_data"]["panel"] = ["Aggregated"] * len(
st.session_state["cleaned_data"]
)
disable = True
else:
panels = st.session_state["cleaned_data"]["panel"]
disable = False
selected_panels = st.multiselect(
"Please choose the panels you wish to analyze.If no panels are selected, insights will be derived from the overall data.",
st.session_state["cleaned_data"]["panel"].unique(),
default=st.session_state["project_dct"]["data_validation"]["selected_panels"],
disabled=disable,
)
st.session_state["project_dct"]["data_validation"][
"selected_panels"
] = selected_panels
aggregation_dict = {
item: "sum" if key == "Media" else "mean"
for key, value in st.session_state["category_dict"].items()
for item in value
if item not in ["date", "panel"]
}
aggregation_dict = {
key: value
for key, value in aggregation_dict.items()
if key in st.session_state["cleaned_data"].columns
}
with st.expander("**Target Variable Analysis**"):
if len(selected_panels) > 0:
st.session_state["Cleaned_data_panel"] = st.session_state["cleaned_data"][
st.session_state["cleaned_data"]["panel"].isin(selected_panels)
]
st.session_state["Cleaned_data_panel"] = (
st.session_state["Cleaned_data_panel"]
.groupby(by="date")
.agg(aggregation_dict)
)
st.session_state["Cleaned_data_panel"] = st.session_state[
"Cleaned_data_panel"
].reset_index()
else:
# st.write(st.session_state['cleaned_data'])
st.session_state["Cleaned_data_panel"] = (
st.session_state["cleaned_data"]
.groupby(by="date")
.agg(aggregation_dict)
)
st.session_state["Cleaned_data_panel"] = st.session_state[
"Cleaned_data_panel"
].reset_index()
fig = line_plot_target(
st.session_state["Cleaned_data_panel"],
target=target_column,
title=f"{target_column} Over Time",
)
st.plotly_chart(fig, use_container_width=True)
media_channel = list(
*[
st.session_state["category_dict"][key]
for key in st.session_state["category_dict"].keys()
if key == "Media"
]
)
spends_features = list(
*[
st.session_state["category_dict"][key]
for key in st.session_state["category_dict"].keys()
if key == "Spends"
]
)
# st.write(media_channel)
exo_var = list(
*[
st.session_state["category_dict"][key]
for key in st.session_state["category_dict"].keys()
if key == "Exogenous"
]
)
internal_var = list(
*[
st.session_state["category_dict"][key]
for key in st.session_state["category_dict"].keys()
if key == "Internal"
]
)
Non_media_variables = exo_var + internal_var
st.markdown("### Annual Data Summary")
summary_df = summary(
st.session_state["Cleaned_data_panel"],
media_channel + [target_column] + spends_features,
spends=None,
Target=True,
)
st.dataframe(
summary_df.sort_index(axis=1),
use_container_width=True,
)
if st.checkbox("View Raw Data"):
st.cache_resource(show_spinner=False)
def raw_df_gen():
# Convert 'date' to datetime but do not convert to string yet for sorting
dates = pd.to_datetime(st.session_state["Cleaned_data_panel"]["date"])
# Concatenate the dates with other numeric columns formatted
raw_df = pd.concat(
[
dates,
st.session_state["Cleaned_data_panel"]
.select_dtypes(np.number)
.applymap(format_numbers),
],
axis=1,
)
# Now sort raw_df by the 'date' column, which is still in datetime format
sorted_raw_df = raw_df.sort_values(by="date", ascending=True)
# After sorting, convert 'date' to string format for display
sorted_raw_df["date"] = sorted_raw_df["date"].dt.strftime("%m/%d/%Y")
return sorted_raw_df
# Display the sorted DataFrame in Streamlit
st.dataframe(raw_df_gen())
col1 = st.columns(1)
if "selected_feature" not in st.session_state:
st.session_state["selected_feature"] = None
# st.warning('Work in Progress')
with st.expander("Media Variables Analysis"):
# Get the selected feature
st.session_state["selected_feature"] = st.selectbox(
"Select Media", media_channel + spends_features, format_func=format_display
)
# st.write(st.session_state["selected_feature"].split('cnt_')[1] )
# st.session_state["project_dct"]["data_validation"]["selected_feature"] = (
# )
# Filter spends features based on the selected feature
spends_col = st.columns(2)
spends_feature = [
col
for col in spends_features
if re.split(r"cost_|spends_", col.lower())[1]
in st.session_state["selected_feature"]
]
with spends_col[0]:
if len(spends_feature) == 0:
st.warning(
"The selected metric does not include a 'spends' variable in the data. Please verify that the columns are correctly named or select the appropriate columns in the provided selection box."
)
else:
st.write(
f'Selected "{spends_feature[0]}" as the corresponding spends variable automatically. If this is incorrect, please click the checkbox to change the variable.'
)
with spends_col[1]:
if len(spends_feature) == 0 or st.checkbox(
'Select "Spends" variable for CPM and CPC calculation'
):
spends_feature = [st.selectbox("Spends Variable", spends_features)]
if "validation" not in st.session_state:
st.session_state["validation"] = st.session_state["project_dct"][
"data_validation"
]["validated_variables"]
val_variables = [col for col in media_channel if col != "date"]
if not set(
st.session_state["project_dct"]["data_validation"]["validated_variables"]
).issubset(set(val_variables)):
st.session_state["validation"] = []
else:
fig_row1 = line_plot(
st.session_state["Cleaned_data_panel"],
x_col="date",
y1_cols=[st.session_state["selected_feature"]],
y2_cols=[target_column],
title=f'Analysis of {st.session_state["selected_feature"]} and {[target_column][0]} Over Time',
)
st.plotly_chart(fig_row1, use_container_width=True)
st.markdown("### Summary")
st.dataframe(
summary(
st.session_state["Cleaned_data_panel"],
[st.session_state["selected_feature"]],
spends=spends_feature[0],
),
use_container_width=True,
)
cols2 = st.columns(2)
if len(
set(st.session_state["validation"]).intersection(val_variables)
) == len(val_variables):
disable = True
help = "All media variables are validated"
else:
disable = False
help = ""
with cols2[0]:
if st.button("Validate", disabled=disable, help=help):
st.session_state["validation"].append(
st.session_state["selected_feature"]
)
with cols2[1]:
if st.checkbox("Validate All", disabled=disable, help=help):
st.session_state["validation"].extend(val_variables)
st.success("All media variables are validated ✅")
if len(
set(st.session_state["validation"]).intersection(val_variables)
) != len(val_variables):
validation_data = pd.DataFrame(
{
"Validate": [
(True if col in st.session_state["validation"] else False)
for col in val_variables
],
"Variables": val_variables,
}
)
sorted_validation_df = validation_data.sort_values(
by="Variables", ascending=True, na_position="first"
)
cols3 = st.columns([1, 30])
with cols3[1]:
validation_df = st.data_editor(
sorted_validation_df,
# column_config={
# 'Validate':st.column_config.CheckboxColumn(wi)
# },
column_config={
"Validate": st.column_config.CheckboxColumn(
default=False,
width=100,
),
"Variables": st.column_config.TextColumn(width=1000),
},
hide_index=True,
)
selected_rows = validation_df[validation_df["Validate"] == True][
"Variables"
]
# st.write(selected_rows)
st.session_state["validation"].extend(selected_rows)
st.session_state["project_dct"]["data_validation"][
"validated_variables"
] = st.session_state["validation"]
not_validated_variables = [
col
for col in val_variables
if col not in st.session_state["validation"]
]
if not_validated_variables:
not_validated_message = f'The following variables are not validated:\n{" , ".join(not_validated_variables)}'
st.warning(not_validated_message)
with st.expander("Non-Media Variables Analysis"):
if len(Non_media_variables) == 0:
st.warning("Non-Media variables not present")
else:
selected_columns_row4 = st.selectbox(
"Select Channel",
Non_media_variables,
format_func=format_display,
index=st.session_state["project_dct"]["data_validation"][
"Non_media_variables"
],
)
st.session_state["project_dct"]["data_validation"][
"Non_media_variables"
] = Non_media_variables.index(selected_columns_row4)
# # Create the dual-axis line plot
fig_row4 = line_plot(
st.session_state["Cleaned_data_panel"],
x_col="date",
y1_cols=[selected_columns_row4],
y2_cols=[target_column],
title=f"Analysis of {selected_columns_row4} and {target_column} Over Time",
)
st.plotly_chart(fig_row4, use_container_width=True)
selected_non_media = selected_columns_row4
sum_df = st.session_state["Cleaned_data_panel"][
["date", selected_non_media, target_column]
]
sum_df["Year"] = pd.to_datetime(
st.session_state["Cleaned_data_panel"]["date"]
).dt.year
# st.dataframe(df)
# st.dataframe(sum_df.head(2))
sum_df = sum_df.drop("date", axis=1).groupby("Year").agg("sum")
sum_df.loc["Grand Total"] = sum_df.sum()
sum_df = sum_df.applymap(format_numbers)
sum_df.fillna("-", inplace=True)
sum_df = sum_df.replace({"0.0": "-", "nan": "-"})
st.markdown("### Summary")
st.dataframe(sum_df, use_container_width=True)
with st.expander("Correlation Analysis"):
options = list(
st.session_state["Cleaned_data_panel"].select_dtypes(np.number).columns
)
if "correlation" not in st.session_state["project_dct"]["data_import"]:
st.session_state["project_dct"]["data_import"]["correlation"]=[]
selected_options = st.multiselect(
"Select Variables for Correlation Plot",
[var for var in options if var != target_column],
default=st.session_state["project_dct"]["data_import"]["correlation"],
)
st.session_state["project_dct"]["data_import"]["correlation"] = selected_options
st.pyplot(
correlation_plot(
st.session_state["Cleaned_data_panel"],
selected_options,
target_column,
)
)
if st.button("Save Changes", use_container_width=True):
# Update DB
update_db(
prj_id=st.session_state["project_number"],
page_nam="Data Validation and Insights",
file_nam="project_dct",
pkl_obj=pickle.dumps(st.session_state["project_dct"]),
schema=schema,
)
st.success("Changes saved")
|