File size: 17,046 Bytes
00b00eb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
import streamlit as st
import pandas as pd
from data_analysis import *
import numpy as np
import pickle
import streamlit as st
from utilities import set_header, load_local_css, update_db, project_selection
from post_gres_cred import db_cred
from utilities import update_db
import re

st.set_page_config(
    page_title="Data Assessment​",
    page_icon=":shark:",
    layout="wide",
    initial_sidebar_state="collapsed",
)

schema = db_cred["schema"]
load_local_css("styles.css")
set_header()

if "username" not in st.session_state:
    st.session_state["username"] = None

if "project_name" not in st.session_state:
    st.session_state["project_name"] = None

if "project_dct" not in st.session_state:
    project_selection()
    st.stop()

if "username" in st.session_state and st.session_state["username"] is not None:

    if st.session_state["project_dct"]["data_import"]["imputed_tool_df"] is None:

        st.error(f"Please import data from the Data Import Page")
        st.stop()

    st.session_state["cleaned_data"] = st.session_state["project_dct"]["data_import"][
        "imputed_tool_df"
    ]

    st.session_state["category_dict"] = st.session_state["project_dct"]["data_import"][
        "category_dict"
    ]

    # st.write(st.session_state['category_dict'])
    cols1 = st.columns([2, 1])

    with cols1[0]:
        st.markdown(f"**Welcome {st.session_state['username']}**")
    with cols1[1]:
        st.markdown(f"**Current Project: {st.session_state['project_name']}**")

    st.title("Data Assessment​")

    target_variables = [
        st.session_state["category_dict"][key]
        for key in st.session_state["category_dict"].keys()
        if key == "Response Metrics"
    ]

    def format_display(inp):
        return (
            inp.title()
            .replace("_", " ")
            .replace("Media", "")
            .replace("Cnt", "")
            .strip()
        )

    target_variables = list(*target_variables)
    target_column = st.selectbox(
        "Select the Target Feature/Dependent Variable (will be used in all charts as reference)",
        target_variables,
        index=st.session_state["project_dct"]["data_validation"]["target_column"],
        format_func=format_display,
    )

    st.session_state["project_dct"]["data_validation"]["target_column"] = (
        target_variables.index(target_column)
    )

    st.session_state["target_column"] = target_column


    if "panel" not in st.session_state["cleaned_data"].columns:
        st.write('True')
        st.session_state["cleaned_data"]["panel"] = ["Aggregated"] * len(
            st.session_state["cleaned_data"]
        )
        
        disable = True

    else:
        panels = st.session_state["cleaned_data"]["panel"]

        disable = False

    selected_panels = st.multiselect(
        "Please choose the panels you wish to analyze.If no panels are selected, insights will be derived from the overall data.",
        st.session_state["cleaned_data"]["panel"].unique(),
        default=st.session_state["project_dct"]["data_validation"]["selected_panels"],
        disabled=disable,
    )

    st.session_state["project_dct"]["data_validation"][
        "selected_panels"
    ] = selected_panels

    aggregation_dict = {
        item: "sum" if key == "Media" else "mean"
        for key, value in st.session_state["category_dict"].items()
        for item in value
        if item not in ["date", "panel"]
    }

    aggregation_dict = {
        key: value
        for key, value in aggregation_dict.items()
        if key in st.session_state["cleaned_data"].columns
    }

    with st.expander("**Target Variable  Analysis**"):

        if len(selected_panels) > 0:
            st.session_state["Cleaned_data_panel"] = st.session_state["cleaned_data"][
                st.session_state["cleaned_data"]["panel"].isin(selected_panels)
            ]

            st.session_state["Cleaned_data_panel"] = (
                st.session_state["Cleaned_data_panel"]
                .groupby(by="date")
                .agg(aggregation_dict)
            )
            st.session_state["Cleaned_data_panel"] = st.session_state[
                "Cleaned_data_panel"
            ].reset_index()
        else:
            # st.write(st.session_state['cleaned_data'])
            st.session_state["Cleaned_data_panel"] = (
                st.session_state["cleaned_data"]
                .groupby(by="date")
                .agg(aggregation_dict)
            )
            st.session_state["Cleaned_data_panel"] = st.session_state[
                "Cleaned_data_panel"
            ].reset_index()

        fig = line_plot_target(
            st.session_state["Cleaned_data_panel"],
            target=target_column,
            title=f"{target_column} Over Time",
        )
        st.plotly_chart(fig, use_container_width=True)

        media_channel = list(
            *[
                st.session_state["category_dict"][key]
                for key in st.session_state["category_dict"].keys()
                if key == "Media"
            ]
        )

        spends_features = list(
            *[
                st.session_state["category_dict"][key]
                for key in st.session_state["category_dict"].keys()
                if key == "Spends"
            ]
        )
        # st.write(media_channel)

        exo_var = list(
            *[
                st.session_state["category_dict"][key]
                for key in st.session_state["category_dict"].keys()
                if key == "Exogenous"
            ]
        )
        internal_var = list(
            *[
                st.session_state["category_dict"][key]
                for key in st.session_state["category_dict"].keys()
                if key == "Internal"
            ]
        )

        Non_media_variables = exo_var + internal_var

        st.markdown("### Annual Data Summary")

        summary_df = summary(
            st.session_state["Cleaned_data_panel"],
            media_channel + [target_column] + spends_features,
            spends=None,
            Target=True,
        )

        st.dataframe(
            summary_df.sort_index(axis=1),
            use_container_width=True,
        )

        if st.checkbox("View Raw Data"):
            st.cache_resource(show_spinner=False)

            def raw_df_gen():
                # Convert 'date' to datetime but do not convert to string yet for sorting
                dates = pd.to_datetime(st.session_state["Cleaned_data_panel"]["date"])

                # Concatenate the dates with other numeric columns formatted
                raw_df = pd.concat(
                    [
                        dates,
                        st.session_state["Cleaned_data_panel"]
                        .select_dtypes(np.number)
                        .applymap(format_numbers),
                    ],
                    axis=1,
                )

                # Now sort raw_df by the 'date' column, which is still in datetime format
                sorted_raw_df = raw_df.sort_values(by="date", ascending=True)

                # After sorting, convert 'date' to string format for display
                sorted_raw_df["date"] = sorted_raw_df["date"].dt.strftime("%m/%d/%Y")

                return sorted_raw_df

            # Display the sorted DataFrame in Streamlit
            st.dataframe(raw_df_gen())

    col1 = st.columns(1)

    if "selected_feature" not in st.session_state:
        st.session_state["selected_feature"] = None

    # st.warning('Work in Progress')
    with st.expander("Media Variables Analysis"):
        # Get the selected feature

        st.session_state["selected_feature"] = st.selectbox(
            "Select Media", media_channel + spends_features, format_func=format_display
        )

        # st.write(st.session_state["selected_feature"].split('cnt_')[1] )
        # st.session_state["project_dct"]["data_validation"]["selected_feature"] = (

        # )

        # Filter spends features based on the selected feature
        spends_col = st.columns(2)
        spends_feature = [
            col
            for col in spends_features
            if re.split(r"cost_|spends_", col.lower())[1]
            in st.session_state["selected_feature"]
        ]

        with spends_col[0]:
            if len(spends_feature) == 0:
                st.warning(
                    "The selected metric does not include a 'spends' variable in the data. Please verify that the columns are correctly named or select the appropriate columns in the provided selection box."
                )
            else:
                st.write(
                    f'Selected "{spends_feature[0]}" as the corresponding spends variable automatically. If this is incorrect, please click the checkbox to change the variable.'
                )

        with spends_col[1]:
            if len(spends_feature) == 0 or st.checkbox(
                'Select "Spends" variable for CPM and CPC calculation'
            ):
                spends_feature = [st.selectbox("Spends Variable", spends_features)]

        if "validation" not in st.session_state:

            st.session_state["validation"] = st.session_state["project_dct"][
                "data_validation"
            ]["validated_variables"]

        val_variables = [col for col in media_channel if col != "date"]

        if not set(
            st.session_state["project_dct"]["data_validation"]["validated_variables"]
        ).issubset(set(val_variables)):

            st.session_state["validation"] = []

        else:
            fig_row1 = line_plot(
                st.session_state["Cleaned_data_panel"],
                x_col="date",
                y1_cols=[st.session_state["selected_feature"]],
                y2_cols=[target_column],
                title=f'Analysis of {st.session_state["selected_feature"]} and {[target_column][0]} Over Time',
            )
            st.plotly_chart(fig_row1, use_container_width=True)
            st.markdown("### Summary")
            st.dataframe(
                summary(
                    st.session_state["Cleaned_data_panel"],
                    [st.session_state["selected_feature"]],
                    spends=spends_feature[0],
                ),
                use_container_width=True,
            )

            cols2 = st.columns(2)

            if len(
                set(st.session_state["validation"]).intersection(val_variables)
            ) == len(val_variables):
                disable = True
                help = "All media variables are validated"
            else:
                disable = False
                help = ""

            with cols2[0]:
                if st.button("Validate", disabled=disable, help=help):
                    st.session_state["validation"].append(
                        st.session_state["selected_feature"]
                    )
            with cols2[1]:

                if st.checkbox("Validate All", disabled=disable, help=help):
                    st.session_state["validation"].extend(val_variables)
                    st.success("All media variables are validated ✅")

            if len(
                set(st.session_state["validation"]).intersection(val_variables)
            ) != len(val_variables):
                validation_data = pd.DataFrame(
                    {
                        "Validate": [
                            (True if col in st.session_state["validation"] else False)
                            for col in val_variables
                        ],
                        "Variables": val_variables,
                    }
                )

                sorted_validation_df = validation_data.sort_values(
                    by="Variables", ascending=True, na_position="first"
                )
                cols3 = st.columns([1, 30])
                with cols3[1]:
                    validation_df = st.data_editor(
                        sorted_validation_df,
                        # column_config={
                        # 'Validate':st.column_config.CheckboxColumn(wi)
                        # },
                        column_config={
                            "Validate": st.column_config.CheckboxColumn(
                                default=False,
                                width=100,
                            ),
                            "Variables": st.column_config.TextColumn(width=1000),
                        },
                        hide_index=True,
                    )

                    selected_rows = validation_df[validation_df["Validate"] == True][
                        "Variables"
                    ]

                    # st.write(selected_rows)

                    st.session_state["validation"].extend(selected_rows)

                    st.session_state["project_dct"]["data_validation"][
                        "validated_variables"
                    ] = st.session_state["validation"]

                    not_validated_variables = [
                        col
                        for col in val_variables
                        if col not in st.session_state["validation"]
                    ]

                    if not_validated_variables:
                        not_validated_message = f'The following variables are not validated:\n{" , ".join(not_validated_variables)}'
                        st.warning(not_validated_message)

    with st.expander("Non-Media Variables Analysis"):
        if len(Non_media_variables) == 0:
            st.warning("Non-Media variables not present")

        else:
            selected_columns_row4 = st.selectbox(
                "Select Channel",
                Non_media_variables,
                format_func=format_display,
                index=st.session_state["project_dct"]["data_validation"][
                    "Non_media_variables"
                ],
            )

            st.session_state["project_dct"]["data_validation"][
                "Non_media_variables"
            ] = Non_media_variables.index(selected_columns_row4)

            #     # Create the dual-axis line plot
            fig_row4 = line_plot(
                st.session_state["Cleaned_data_panel"],
                x_col="date",
                y1_cols=[selected_columns_row4],
                y2_cols=[target_column],
                title=f"Analysis of {selected_columns_row4} and {target_column} Over Time",
            )
            st.plotly_chart(fig_row4, use_container_width=True)
            selected_non_media = selected_columns_row4
            sum_df = st.session_state["Cleaned_data_panel"][
                ["date", selected_non_media, target_column]
            ]
            sum_df["Year"] = pd.to_datetime(
                st.session_state["Cleaned_data_panel"]["date"]
            ).dt.year
            # st.dataframe(df)
            # st.dataframe(sum_df.head(2))
            
            sum_df = sum_df.drop("date", axis=1).groupby("Year").agg("sum")
            sum_df.loc["Grand Total"] = sum_df.sum()
            sum_df = sum_df.applymap(format_numbers)
            sum_df.fillna("-", inplace=True)
            sum_df = sum_df.replace({"0.0": "-", "nan": "-"})
            st.markdown("### Summary")
            st.dataframe(sum_df, use_container_width=True)

    with st.expander("Correlation Analysis"):
        options = list(
            st.session_state["Cleaned_data_panel"].select_dtypes(np.number).columns
        )
         

        if "correlation" not in st.session_state["project_dct"]["data_import"]:
            st.session_state["project_dct"]["data_import"]["correlation"]=[]
            
        selected_options = st.multiselect(
            "Select Variables for Correlation Plot",
            [var for var in options if var != target_column],
            default=st.session_state["project_dct"]["data_import"]["correlation"],
        )

        st.session_state["project_dct"]["data_import"]["correlation"] = selected_options

        st.pyplot(
            correlation_plot(
                st.session_state["Cleaned_data_panel"],
                selected_options,
                target_column,
            )
        )

    if st.button("Save Changes", use_container_width=True):
        # Update DB
        update_db(
            prj_id=st.session_state["project_number"],
            page_nam="Data Validation and Insights",
            file_nam="project_dct",
            pkl_obj=pickle.dumps(st.session_state["project_dct"]),
            schema=schema,
        )
        st.success("Changes saved")