File size: 46,873 Bytes
00b00eb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
# Importing necessary libraries
import streamlit as st

st.set_page_config(
    page_title="Data Import",
    page_icon="โš–๏ธ",
    layout="wide",
    initial_sidebar_state="collapsed",
)


import re
import sys
import pickle
import numbers
import traceback
import pandas as pd
from scenario import numerize
from post_gres_cred import db_cred
from collections import OrderedDict
from log_application import log_message
from utilities import set_header, load_local_css, update_db, project_selection
from constants import (
    upload_rows_limit,
    upload_column_limit,
    word_length_limit_lower,
    word_length_limit_upper,
    minimum_percent_overlap,
    minimum_row_req,
    percent_drop_col_threshold,
)

schema = db_cred["schema"]
load_local_css("styles.css")
set_header()


# Initialize project name session state
if "project_name" not in st.session_state:
    st.session_state["project_name"] = None

# Fetch project dictionary
if "project_dct" not in st.session_state:
    project_selection()
    st.stop()

# Display Username and Project Name
if "username" in st.session_state and st.session_state["username"] is not None:

    cols1 = st.columns([2, 1])

    with cols1[0]:
        st.markdown(f"**Welcome {st.session_state['username']}**")
    with cols1[1]:
        st.markdown(f"**Current Project: {st.session_state['project_name']}**")


# Initialize session state keys
if "granularity_selection_key" not in st.session_state:
    st.session_state["granularity_selection_key"] = st.session_state["project_dct"][
        "data_import"
    ]["granularity_selection"]


# Function to format name
def name_format_func(name):
    return str(name).strip().title()


# Function to get columns with specified prefix and remove prefix
def get_columns_with_prefix(df, prefix):
    return [
        col.replace(prefix, "")
        for col in df.columns
        if col.startswith(prefix) and str(col) != str(prefix)
    ]


# Function to fetch columns info
@st.cache_data(show_spinner=False)
def fetch_columns(gold_layer_df, data_upload_df):
    # Get lists of columns starting with 'spends_' and 'response_metric_' from gold_layer_df
    spends_columns_gold_layer = get_columns_with_prefix(gold_layer_df, "spends_")
    response_metric_columns_gold_layer = get_columns_with_prefix(
        gold_layer_df, "response_metric_"
    )

    # Get lists of columns starting with 'spends_' and 'response_metric_' from data_upload_df
    spends_columns_upload = get_columns_with_prefix(data_upload_df, "spends_")
    response_metric_columns_upload = get_columns_with_prefix(
        data_upload_df, "response_metric_"
    )

    # Combine lists from both DataFrames
    spends_columns = spends_columns_gold_layer + spends_columns_upload
    # Remove 'total' from the spends_columns list if it exists
    spends_columns = list(
        set([col for col in spends_columns if not col.endswith("_total")])
    )

    response_metric_columns = (
        response_metric_columns_gold_layer + response_metric_columns_upload
    )
    # Filter columns ending with '_total' and remove the '_total' suffix
    response_metric_columns = list(
        set(
            [
                col[:-6]
                for col in response_metric_columns
                if col.endswith("_total") and len(col[:-6]) != 0
            ]
        )
    )

    # Get list of all columns from both DataFrames
    gold_layer_columns = list(gold_layer_df.columns)
    data_upload_columns = list(data_upload_df.columns)

    # Combine all columns and get unique columns
    all_columns = list(set(gold_layer_columns + data_upload_columns))

    return (
        spends_columns,
        response_metric_columns,
        all_columns,
        gold_layer_columns,
        data_upload_columns,
    )


# Function to format values for display
@st.cache_data(show_spinner=False)
def format_values_for_display(values_list):
    # Format value
    formatted_list = [value.lower().strip() for value in values_list]
    # Join values with commas and 'and' before the last value
    if len(formatted_list) > 1:
        return ", ".join(formatted_list[:-1]) + ", and " + formatted_list[-1]
    elif formatted_list:
        return formatted_list[0]
    return "No values available"


# Function to validate input DataFrame
@st.cache_data(show_spinner=False)
def valid_input_df(

    df,

    spends_columns,

    response_metric_columns,

    total_columns,

    gold_layer_columns,

    data_upload_columns,

):
    # Check if DataFrame is empty
    if df.empty or len(df) < 1:
        return (True, None)

    # Check for invalid column names
    invalid_columns = [
        col
        for col in df.columns
        if not re.match(r"^[A-Za-z0-9_]+$", col)
        or not (word_length_limit_lower <= len(col) <= word_length_limit_upper)
    ]
    if invalid_columns:
        return (
            False,
            f"Invalid column names: {format_values_for_display(invalid_columns)}. Use only letters, numbers, and underscores. Column name length should be {word_length_limit_lower} to {word_length_limit_upper} characters long.",
        )

    # Ensure 'panel' column values are strings and conform to specified pattern and length
    if "panel" in df.columns:
        df["panel"] = df["panel"].astype(str).str.strip()
        invalid_panel_values = [
            val
            for val in df["panel"].unique()
            if not re.match(r"^[A-Za-z0-9_]+$", val)
            or not (word_length_limit_lower <= len(val) <= word_length_limit_upper)
        ]
        if invalid_panel_values:
            return (
                False,
                f"Invalid panel values: {format_values_for_display(invalid_panel_values)}. Use only letters, numbers, and underscores. Panel name length should be {word_length_limit_lower} to {word_length_limit_upper} characters long.",
            )

    # Check for missing required columns
    required_columns = ["date", "panel"]
    missing_columns = [col for col in required_columns if col not in df.columns]
    if missing_columns:
        return (
            False,
            f"Missing compulsory columns: {format_values_for_display(missing_columns)}.",
        )

    # Check if all other columns are numeric
    non_numeric_columns = [
        col
        for col in df.columns
        if col not in required_columns and not pd.api.types.is_numeric_dtype(df[col])
    ]
    if non_numeric_columns:
        return (
            False,
            f"Non-numeric columns: {format_values_for_display(non_numeric_columns)}. All columns except {format_values_for_display(required_columns)} should be numeric.",
        )

    # Ensure all columns in data_upload_columns are unique
    duplicate_columns_in_upload = [
        col for col in data_upload_columns if data_upload_columns.count(col) > 1
    ]
    if duplicate_columns_in_upload:
        return (
            False,
            f"Duplicate columns found in the uploaded data: {format_values_for_display(set(duplicate_columns_in_upload))}.",
        )

    # Convert 'date' column to datetime format
    try:
        df["date"] = pd.to_datetime(df["date"], format="%Y-%m-%d")
    except:
        return False, "The 'date' column is not in the correct format 'YYYY-MM-DD'."

    # Check date frequency
    unique_panels = df["panel"].unique()
    for panel in unique_panels:
        date_diff = df[df["panel"] == panel]["date"].diff().dropna()
        if not (
            (date_diff == pd.Timedelta(days=1)).all()
            or (date_diff == pd.Timedelta(weeks=1)).all()
        ):
            return False, "The 'date' column does not have a daily or weekly frequency."

    # Check for null values in 'date' or 'panel' columns
    if df[required_columns].isnull().any().any():
        return (
            False,
            f"The {format_values_for_display(required_columns)} should not contain null values.",
        )

    # Check for panels with less than 1% date overlap
    if not gold_layer_df.empty:
        panels_with_low_overlap = []
        unique_panels = list(
            set(df["panel"].unique()).union(set(gold_layer_df["panel"].unique()))
        )
        for panel in unique_panels:
            gold_layer_dates = set(
                gold_layer_df[gold_layer_df["panel"] == panel]["date"]
            )
            data_upload_dates = set(df[df["panel"] == panel]["date"])
            if gold_layer_dates and data_upload_dates:
                overlap = len(gold_layer_dates & data_upload_dates) / len(
                    gold_layer_dates | data_upload_dates
                )
            else:
                overlap = 0
            if overlap < (minimum_percent_overlap / 100):
                panels_with_low_overlap.append(panel)

        if panels_with_low_overlap:
            return (
                False,
                f"Date columns in the gold layer and uploaded data do not have at least {minimum_percent_overlap}% overlap for panels: {format_values_for_display(panels_with_low_overlap)}.",
            )

    # Check if spends_columns is less than two
    if len(spends_columns) < 2:
        return False, "Please add at least two spends columns."

    # Check if response_metric_columns is empty
    if len(response_metric_columns) < 1:
        return False, "Please add response metric columns."

    # Check if all numeric columns are positive except those starting with 'exogenous_' or 'internal_'
    valid_prefixes = ["exogenous_", "internal_"]
    negative_values_columns = [
        col
        for col in df.select_dtypes(include=[float, int]).columns
        if not any(col.startswith(prefix) for prefix in valid_prefixes)
        and (df[col] < 0).any()
    ]
    if negative_values_columns:
        return (
            False,
            f"Negative values detected in columns: {format_values_for_display(negative_values_columns)}. Ensure all media and response metric columns are positive.",
        )

    # Check for unassociated columns
    detected_channels = spends_columns + ["total"]
    unassociated_columns = []
    for col in df.columns:
        if (col.startswith("_") or col.endswith("_")) or not (
            col.startswith("exogenous_")  # Column starts with "exogenous_"
            or col.startswith("internal_")  # Column starts with "internal_"
            or any(
                col == f"spends_{channel}" for channel in spends_columns
            )  # Column is not in the format "spends_<channel>"
            or any(
                col == f"response_metric_{metric}_{channel}"
                for metric in response_metric_columns
                for channel in detected_channels
            )  # Column is not in the format "response_metric_<metric>_<channel>"
            or any(
                col.startswith("media_")
                and col.endswith(f"_{channel}")
                and len(col) > len(f"media__{channel}")
                for channel in spends_columns
            )  # Column is not in the format "media_<media_variable_name>_<channel>"
            or col in ["date", "panel"]
        ):
            unassociated_columns.append(col)

    if unassociated_columns:
        return (
            False,
            f"Columns with incorrect format detected: {format_values_for_display(unassociated_columns)}.",
        )

    return True, "The data is valid and meets all requirements."


# Function to load the uploaded Excel file into a DataFrame
@st.cache_data(show_spinner=False)
def load_and_transform_data(uploaded_file):
    # Load the uploaded file into a DataFrame if a file is uploaded
    if uploaded_file is not None:
        df = pd.read_excel(uploaded_file)
    else:
        df = pd.DataFrame()
        return df

    # Check if DataFrame exceeds row and column limits
    if len(df) > upload_rows_limit or len(df.columns) > upload_column_limit:
        st.warning(
            f"Data exceeds the row limit of {numerize(upload_rows_limit)} or column limit of {numerize(upload_column_limit)}. Please upload a smaller file.",
            icon="โš ๏ธ",
        )

        # Log message
        log_message(
            "warning",
            f"Data exceeds the row limit of {numerize(upload_rows_limit)} or column limit of {numerize(upload_column_limit)}. Please upload a smaller file.",
            "Data Import",
        )

        return pd.DataFrame()

    # If the DataFrame contains only 'panel' and 'date' columns, return empty DataFrame
    if set(df.columns) == {"date", "panel"}:
        return pd.DataFrame()

    # Transform column names: lower, strip start and end, replace spaces with _
    df.columns = [str(col).strip().lower().replace(" ", "_") for col in df.columns]

    # If 'panel' column exists, clean its values
    try:
        if "panel" in df.columns:
            df["panel"] = (
                df["panel"].astype(str).str.lower().str.strip().str.replace(" ", "_")
            )
    except:
        return df

    try:
        df["date"] = pd.to_datetime(df["date"], format="%Y-%m-%d")
    except:
        # The 'date' column is not in the correct format 'YYYY-MM-DD'
        return df

    # Check date frequency and convert to daily if needed
    date_diff = df["date"].diff().dropna()
    if (date_diff == pd.Timedelta(days=1)).all():
        # Data is already at daily level
        return df
    elif (date_diff == pd.Timedelta(weeks=1)).all():
        # Data is at weekly level, convert to daily
        weekly_data = df.copy()
        daily_data = []

        for index, row in weekly_data.iterrows():
            week_start = row["date"] - pd.to_timedelta(row["date"].weekday(), unit="D")
            for i in range(7):
                daily_date = week_start + pd.DateOffset(days=i)
                new_row = row.copy()
                new_row["date"] = daily_date
                for col in df.columns:
                    if isinstance(new_row[col], numbers.Number):
                        new_row[col] = new_row[col] / 7
                daily_data.append(new_row)

        daily_data_df = pd.DataFrame(daily_data)
        return daily_data_df
    else:
        # The 'date' column does not have a daily or weekly frequency
        return df


# Function to merge DataFrames if present
@st.cache_data(show_spinner=False)
def merge_dataframes(gold_layer_df, data_upload_df):
    if gold_layer_df.empty and data_upload_df.empty:
        return pd.DataFrame()

    if not gold_layer_df.empty and not data_upload_df.empty:
        # Merge gold_layer_df and data_upload_df on 'panel', and 'date'
        merged_df = pd.merge(
            gold_layer_df,
            data_upload_df,
            on=["panel", "date"],
            how="outer",
            suffixes=("_gold", "_upload"),
        )

        # Handle duplicate columns
        for col in merged_df.columns:
            if col.endswith("_gold"):
                base_col = col[:-5]  # Remove '_gold' suffix
                upload_col = base_col + "_upload"  # Column name in data_upload_df
                if upload_col in merged_df.columns:
                    # Prefer values from data_upload_df
                    merged_df[base_col] = merged_df[upload_col].combine_first(
                        merged_df[col]
                    )
                    merged_df.drop(columns=[col, upload_col], inplace=True)
                else:
                    # Rename column to remove the suffix
                    merged_df.rename(columns={col: base_col}, inplace=True)

    elif data_upload_df.empty:
        merged_df = gold_layer_df.copy()

    elif gold_layer_df.empty:
        merged_df = data_upload_df.copy()

    return merged_df


# Function to check if all required columns are present in the Uploaded DataFrame
@st.cache_data(show_spinner=False)
def check_required_columns(df, detected_channels, detected_response_metric):
    required_columns = []

    # Add all channels with 'spends_' + detected channel name
    for channel in detected_channels:
        required_columns.append(f"spends_{channel}")

    # Add all channels with 'response_metric_' + detected channel name
    for response_metric in detected_response_metric:
        for channel in detected_channels + ["total"]:
            required_columns.append(f"response_metric_{response_metric}_{channel}")

    # Check for missing columns
    missing_columns = [col for col in required_columns if col not in df.columns]

    # Channel groupings
    no_media_data = []
    channel_columns_dict = {}
    for channel in detected_channels:
        channel_columns = [
            col
            for col in merged_df.columns
            if channel in col
            and not (
                col.startswith("response_metric_")
                or col.startswith("exogenous_")
                or col.startswith("internal_")
            )
            and col.endswith(channel)
        ]
        channel_columns_dict[channel] = channel_columns

        if len(channel_columns) <= 1:
            no_media_data.append(channel)

    return missing_columns, no_media_data, channel_columns_dict


# Function to prepare tool DataFrame
def prepare_tool_df(merged_df, granularity_selection):
    # Drop all response metric columns that do not end with '_total'
    cols_to_drop = [
        col
        for col in merged_df.columns
        if col.startswith("response_metric_") and not col.endswith("_total")
    ]

    # Create a DataFrame to be used for the tool
    tool_df = merged_df.drop(columns=cols_to_drop)

    # Convert to weekly granularity by aggregating all data for given panel and week
    if granularity_selection.lower() == "weekly":
        tool_df.set_index("date", inplace=True)
        tool_df = (
            tool_df.groupby(
                [pd.Grouper(freq="W-MON", closed="left", label="left"), "panel"]
            )
            .sum()
            .reset_index()
        )

    return tool_df


# Function to generate imputation DataFrame
def generate_imputation_df(tool_df):
    # Initialize lists to store the column details
    column_names = []
    categories = []
    missing_values_info = []
    zero_values_info = []
    imputation_methods = []

    # Define the function to calculate the percentage of missing values
    def calculate_missing_percentage(series):
        return series.isnull().sum(), (series.isnull().mean() * 100)

    # Define the function to calculate the percentage of zero values
    def calculate_zero_percentage(series):
        return (series == 0).sum(), ((series == 0).mean() * 100)

    # Iterate over each column to categorize and calculate missing and zero values
    for col in tool_df.columns:
        # Determine category based on column name prefix
        if col == "date" or col == "panel":
            continue
        elif col.startswith("response_metric_"):
            categories.append("Response Metrics")
        elif col.startswith("spends_"):
            categories.append("Spends")
        elif col.startswith("exogenous_"):
            categories.append("Exogenous")
        elif col.startswith("internal_"):
            categories.append("Internal")
        else:
            categories.append("Media")

        # Calculate missing values and percentage
        missing_count, missing_percentage = calculate_missing_percentage(tool_df[col])
        missing_values_info.append(f"{missing_count} ({missing_percentage:.1f}%)")

        # Calculate zero values and percentage
        zero_count, zero_percentage = calculate_zero_percentage(tool_df[col])
        zero_values_info.append(f"{zero_count} ({zero_percentage:.1f}%)")

        # Determine default imputation method based on conditions
        if col.startswith("spends_"):
            imputation_methods.append("Fill with 0")
        elif col.startswith("response_metric_"):
            imputation_methods.append("Fill with Mean")
        elif zero_percentage + missing_percentage > percent_drop_col_threshold:
            imputation_methods.append("Drop Column")
        else:
            imputation_methods.append("Fill with Mean")

        column_names.append(col)

    # Create the DataFrame
    imputation_df = pd.DataFrame(
        {
            "Column Name": column_names,
            "Category": categories,
            "Missing Values": missing_values_info,
            "Zero Values": zero_values_info,
            "Imputation Method": imputation_methods,
        }
    )

    # Define the category order for sorting
    category_order = {
        "Response Metrics": 1,
        "Spends": 2,
        "Media": 3,
        "Exogenous": 4,
        "Internal": 5,
    }

    # Add a temporary column for sorting based on the category order
    imputation_df["Category Order"] = imputation_df["Category"].map(category_order)

    # Sort the DataFrame based on the category order and then drop the temporary column
    imputation_df = imputation_df.sort_values(
        by=["Category Order", "Column Name"]
    ).drop(columns=["Category Order"])

    return imputation_df


# Function to perform imputation as per user requests
def perform_imputation(imputation_df, tool_df):
    # Detect channels associated with spends
    detected_channels = [
        col.replace("spends_", "")
        for col in tool_df.columns
        if col.startswith("spends_")
    ]

    # Create a dictionary with keys as channels and values as associated columns
    group_dict = {
        channel: [
            col
            for col in tool_df.columns
            if channel in col
            and not (
                col.startswith("response_metric_")
                or col.startswith("exogenous_")
                or col.startswith("internal_")
            )
        ]
        for channel in detected_channels
    }

    # Create a reverse dictionary with keys as columns and values as channels
    column_to_channel_dict = {
        col: channel for channel, cols in group_dict.items() for col in cols
    }

    # Perform imputation
    already_dropped = []
    for index, row in imputation_df.iterrows():
        col_name = row["Column Name"]
        impute_method = row["Imputation Method"]

        # Skip already dropped columns
        if col_name in already_dropped:
            continue

        # Skip imputation if dropping response metric column and add warning
        if impute_method == "Drop Column" and col_name.startswith("response_metric_"):
            return None, {}, f"Cannot drop response metric column: {col_name}"

        # Drop column if requested
        if impute_method == "Drop Column":
            # If spends column is dropped, drop all related columns
            if col_name.startswith("spends_"):
                tool_df.drop(
                    columns=group_dict[col_name.replace("spends_", "")],
                    inplace=True,
                )
                already_dropped += group_dict[col_name.replace("spends_", "")]
                del group_dict[col_name.replace("spends_", "")]
            else:
                tool_df.drop(columns=[col_name], inplace=True)
                if not (
                    col_name.startswith("exogenous_")
                    or col_name.startswith("internal_")
                ):
                    group_name = column_to_channel_dict[col_name]
                    group_dict[group_name].remove(col_name)

                    # Check for channels with one or fewer associated columns and add warning if needed
                    if len(group_dict[group_name]) <= 1:
                        return (
                            None,
                            {},
                            f"No media variable associated with category {col_name.replace('spends_', '')}.",
                        )
            continue

        # Check for each panel
        for panel in tool_df["panel"].unique():
            panel_df = tool_df[tool_df["panel"] == panel]

            # Check if the column is entirely null or empty for the current panel
            if panel_df[col_name].isnull().all():
                if impute_method in ["Fill with Mean", "Fill with Median"]:
                    return (
                        None,
                        {},
                        f"Cannot impute for empty column(s) with mean or median. Select 'Fill with 0'. Details: Panel: {panel}, Column: {col_name}",
                    )

        # Fill missing values as requested
        if impute_method == "Fill with Mean":
            tool_df[col_name] = tool_df.groupby("panel")[col_name].transform(
                lambda x: x.fillna(x.mean())
            )
        elif impute_method == "Fill with Median":
            tool_df[col_name] = tool_df.groupby("panel")[col_name].transform(
                lambda x: x.fillna(x.median())
            )
        elif impute_method == "Fill with 0":
            tool_df[col_name].fillna(0, inplace=True)

    # Check if final DataFrame has at least one response metric and two spends categories
    response_metrics = [
        col for col in tool_df.columns if col.startswith("response_metric_")
    ]
    spends_categories = [col for col in tool_df.columns if col.startswith("spends_")]

    if len(response_metrics) < 1:
        return (None, {}, "The final DataFrame must have at least one response metric.")
    if len(spends_categories) < 2:
        return (
            None,
            {},
            "The final DataFrame must have at least two spends categories.",
        )

    return tool_df, group_dict, "Imputed Successfully!"


# Function to display groups with custom styling
def display_groups(input_dict):
    # Define custom CSS for pastel light blue rounded rectangle
    custom_css = """

    <style>

    .group-box {

        background-color: #ffdaab;

        border-radius: 10px;

        padding: 10px;

        margin: 5px 0;

    }

    </style>

    """
    st.markdown(custom_css, unsafe_allow_html=True)

    for group_name, values in input_dict.items():
        group_html = f"<div class='group-box'><strong>{group_name}:</strong> {format_values_for_display(values)}</div>"
        st.markdown(group_html, unsafe_allow_html=True)


# Function to categorize columns and create an ordered dictionary
def create_ordered_category_dict(df):
    category_dict = {
        "Response Metrics": [],
        "Spends": [],
        "Media": [],
        "Exogenous": [],
        "Internal": [],
    }

    # Define the category order for sorting
    category_order = {
        "Response Metrics": 1,
        "Spends": 2,
        "Media": 3,
        "Exogenous": 4,
        "Internal": 5,
    }

    for column in df.columns:
        if column == "date" or column == "panel":
            continue  # Skip 'date' and 'panel' columns

        if column.startswith("response_metric_"):
            category_dict["Response Metrics"].append(column)
        elif column.startswith("spends_"):
            category_dict["Spends"].append(column)
        elif column.startswith("exogenous_"):
            category_dict["Exogenous"].append(column)
        elif column.startswith("internal_"):
            category_dict["Internal"].append(column)
        else:
            category_dict["Media"].append(column)

    # Sort the dictionary based on the defined category order
    sorted_category_dict = OrderedDict(
        sorted(category_dict.items(), key=lambda item: category_order[item[0]])
    )

    return sorted_category_dict


try:
    # Page Title
    st.title("Data Import")

    # Create file uploader
    uploaded_file = st.file_uploader(
        "Upload Data", type=["xlsx"], accept_multiple_files=False
    )

    # Expander with markdown for upload rules
    with st.expander("Upload Rules and Guidelines"):
        st.markdown(
            """

        ### Upload Guidelines

        

        Please ensure your data adheres to the following rules:

        

        1. **File Format**: 

        - Upload all data in a single Excel file.

        

        2. **Compulsory Columns**: 

        - **Date**: Must be in the format `YYYY-MM-DD` only.

        - **Panel**: If no panel data exists, use `aggregated` as a single panel.

        

        3. **Column Naming Conventions**: 

        - All columns should start with the associated category prefix.

        

        **Examples**:



        - **Response Metric Column**: 

        - Format: `response_metric_<response_metric_name>_<channel_name>`

        - Example: `response_metric_revenue_facebook`

        

        - **Total Response Metric**: 

        - Format: `response_metric_<response_metric_name>_total`

        - Example: `response_metric_revenue_total`



        - **Spend Column**: 

        - Format: `spends_<channel_name>`

        - Example: `spends_facebook`



        - **Media Column**: 

        - Format: `media_<media_variable_name>_<channel_name>`

        - Example: `media_clicks_facebook`

        

        - **Exogenous Column**: 

        - Format: `exogenous_<variable_name>`

        - Example: `exogenous_unemployment_rate`

        

        - **Internal Column**: 

        - Format: `internal_<variable_name>`

        - Example: `internal_discount`

        

        **Notes**:

        

        - The `total` response metric should represent the total for a particular date and panel, including all channels and organic contributions.

        - The `date` column for weekly data should be the Monday of that week, representing the data from that Monday to the following Sunday. Example: If the week starts on Monday, August 5th, 2024, and ends on Sunday, August 11th, 2024, the date column for that week should display 2024-08-05.

        """
        )

    # Upload warning placeholder
    upload_warning_placeholder = st.container()

    # Load the uploaded file into a DataFrame if a file is uploaded
    data_upload_df = load_and_transform_data(uploaded_file)

    # Columns for user input
    granularity_col, validate_process_col = st.columns(2)

    # Dropdown for data granularity
    granularity_selection = granularity_col.selectbox(
        "Select data granularity",
        options=["daily", "weekly"],
        format_func=name_format_func,
        key="granularity_selection_key",
    )

    # Gold Layer DataFrame
    gold_layer_df = st.session_state["project_dct"]["data_import"]["gold_layer_df"]
    if not gold_layer_df.empty:
        st.subheader("Gold Layer DataFrame")
        with st.expander("Gold Layer DataFrame"):
            st.dataframe(
                gold_layer_df,
                hide_index=True,
                column_config={
                    "date": st.column_config.DateColumn("date", format="YYYY-MM-DD")
                },
            )
    else:
        st.info(
            "No gold layer data is selected for this project. Please upload data manually.",
            icon="๐Ÿ“Š",
        )

    # Check input data
    with validate_process_col:
        st.write("##")  # Padding

    if validate_process_col.button("Validate and Process", use_container_width=True):
        with st.spinner("Processing ..."):
            # Check if both DataFrames are empty
            valid_input = True
            if gold_layer_df.empty and data_upload_df.empty:
                # If both gold_layer_df and data_upload_df are empty, display a warning and stop the script
                st.warning(
                    "Both the Gold Layer data and the uploaded data are empty. Please provide at least one data source.",
                    icon="โš ๏ธ",
                )

                # Log message
                log_message(
                    "warning",
                    "Both the Gold Layer data and the uploaded data are empty. Please provide at least one data source.",
                    "Data Import",
                )
                valid_input = False

            # If the uploaded DataFrame is empty and the Gold Layer is not, swap them to ensure all validation conditions are checked
            elif not gold_layer_df.empty and data_upload_df.empty:
                data_upload_df, gold_layer_df = (
                    gold_layer_df.copy(),
                    data_upload_df.copy(),
                )
                valid_input = True

            if valid_input:
                # Fetch all necessary columns list
                (
                    spends_columns,
                    response_metric_columns,
                    total_columns,
                    gold_layer_columns,
                    data_upload_columns,
                ) = fetch_columns(gold_layer_df, data_upload_df)

                with upload_warning_placeholder:
                    valid_input, message = valid_input_df(
                        data_upload_df,
                        spends_columns,
                        response_metric_columns,
                        total_columns,
                        gold_layer_columns,
                        data_upload_columns,
                    )
                    if not valid_input:
                        st.warning(message, icon="โš ๏ธ")

                        # Log message
                        log_message("warning", message, "Data Import")

            # Merge gold_layer_df and data_upload_df on 'panel' and 'date'
            if valid_input:
                merged_df = merge_dataframes(gold_layer_df, data_upload_df)

                missing_columns, no_media_data, channel_columns_dict = (
                    check_required_columns(
                        merged_df, spends_columns, response_metric_columns
                    )
                )

                with upload_warning_placeholder:
                    # Warning for categories with no media data
                    if no_media_data:
                        st.warning(
                            f"Categories without media data: {format_values_for_display(no_media_data)}. Please upload at least one media column to proceed.",
                            icon="โš ๏ธ",
                        )
                        valid_input = False

                        # Log message
                        log_message(
                            "warning",
                            f"Categories without media data: {format_values_for_display(no_media_data)}. Please upload at least one media column to proceed.",
                            "Data Import",
                        )

                    # Warning for insufficient rows
                    elif any(
                        granularity_selection == "daily"
                        and len(merged_df[merged_df["panel"] == panel])
                        < minimum_row_req
                        for panel in merged_df["panel"].unique()
                    ):
                        st.warning(
                            f"Insufficient data. Please provide at least {minimum_row_req} days of data for all panel.",
                            icon="โš ๏ธ",
                        )
                        valid_input = False

                        # Log message
                        log_message(
                            "warning",
                            f"Insufficient data. Please provide at least {minimum_row_req} days of data for all panel.",
                            "Data Import",
                        )

                    elif any(
                        granularity_selection == "weekly"
                        and len(merged_df[merged_df["panel"] == panel])
                        < minimum_row_req * 7
                        for panel in merged_df["panel"].unique()
                    ):
                        st.warning(
                            f"Insufficient data. Please provide at least {minimum_row_req} weeks of data for all panel.",
                            icon="โš ๏ธ",
                        )
                        valid_input = False

                        # Log message
                        log_message(
                            "warning",
                            f"Insufficient data. Please provide at least {minimum_row_req} weeks of data for all panel.",
                            "Data Import",
                        )

                    # Info for missing columns
                    elif missing_columns:
                        st.info(
                            f"Missing columns: {format_values_for_display(missing_columns)}. Please upload all required columns.",
                            icon="๐Ÿ’ก",
                        )

            if valid_input:
                # Create a copy of the merged DataFrame for dashboard purposes
                dashboard_df = merged_df

                # Create a DataFrame for tool purposes
                tool_df = prepare_tool_df(merged_df, granularity_selection)

                # Create Imputation DataFrame
                imputation_df = generate_imputation_df(tool_df)

                # Save data to project dictionary
                st.session_state["project_dct"]["data_import"][
                    "granularity_selection"
                ] = st.session_state["granularity_selection_key"]
                st.session_state["project_dct"]["data_import"][
                    "dashboard_df"
                ] = dashboard_df
                st.session_state["project_dct"]["data_import"]["tool_df"] = tool_df
                st.session_state["project_dct"]["data_import"]["unique_panels"] = (
                    tool_df["panel"].unique()
                )
                st.session_state["project_dct"]["data_import"][
                    "imputation_df"
                ] = imputation_df

                # Success message
                with upload_warning_placeholder:
                    st.success("Processed Successfully!", icon="๐Ÿ—‚๏ธ")
                    st.toast("Processed Successfully!", icon="๐Ÿ—‚๏ธ")

                # Log message
                log_message("info", "Processed Successfully!", "Data Import")

    # Load saved data from project dictionary
    if st.session_state["project_dct"]["data_import"]["tool_df"] is None:
        st.stop()
    else:
        tool_df = st.session_state["project_dct"]["data_import"]["tool_df"]
        imputation_df = st.session_state["project_dct"]["data_import"]["imputation_df"]
        unique_panels = st.session_state["project_dct"]["data_import"]["unique_panels"]

    # Unique Panel
    st.subheader("Unique Panel")

    # Get unique panels count
    total_count = len(unique_panels)

    # Define custom CSS for pastel light blue rounded rectangle
    custom_css = """

    <style>

    .panel-box {

        background-color: #ffdaab;

        border-radius: 10px;

        padding: 10px;

        margin: 0 0;

    }

    </style>

    """

    # Display unique panels with total count
    st.markdown(custom_css, unsafe_allow_html=True)
    panel_html = f"<div class='panel-box'><strong>Unique Panels:</strong> {format_values_for_display(unique_panels)}<br><strong>Total Count:</strong> {total_count}</div>"
    st.markdown(panel_html, unsafe_allow_html=True)
    st.write("##")  # Padding

    # Impute Missing Values
    st.subheader("Impute Missing Values")
    edited_imputation_df = st.data_editor(
        imputation_df,
        column_config={
            "Imputation Method": st.column_config.SelectboxColumn(
                options=[
                    "Drop Column",
                    "Fill with Mean",
                    "Fill with Median",
                    "Fill with 0",
                ],
                required=True,
                default="Fill with 0",
            ),
        },
        column_order=[
            "Column Name",
            "Category",
            "Missing Values",
            "Zero Values",
            "Imputation Method",
        ],
        disabled=["Column Name", "Category", "Missing Values", "Zero Values"],
        hide_index=True,
        use_container_width=True,
        key="imputation_df_key",
    )

    # Expander with markdown for imputation rules
    with st.expander("Impute Missing Values Guidelines"):
        st.markdown(
            f"""

        ### Imputation Guidelines

        

        Please adhere to the following rules when handling missing values:



        1. **Default Imputation Strategies**:

        - **Response Metrics**: Imputed using the **mean** value of the column.

        - **Spends**: Imputed with **zero** values.

        - **Media, Exogenous, Internal**: Imputation strategy is **dynamic** based on the data.



        2. **Drop Threshold**:

        - If the combined percentage of **zeros** and **null values** in any column exceeds `{percent_drop_col_threshold}%`, the column will be **categorized to drop** by default which user can change manually.

        - **Example**: If `spends_facebook` has more than `{percent_drop_col_threshold}%` of zeros and nulls combined, it will be marked for dropping.



        3. **Category Generation and Association**:

        - Categories are automatically generated from the **Spends** columns. 

        - **Example**: The column `spends_facebook` will generate the **facebook** category. This means columns like `spends_facebook`, `media_impression_facebook` and `media_clicks_facebook` will also be associated with this category.



        4. **Column Association and Imputation**:

        - Each category must have at least **one Media column** associated with it for imputation to proceed.

        - **Example**: If the **facebook** category does not have any media columns like `media_impression_facebook`, imputation will not be allowed for that category.

        - Solution: Either **drop the entire category** if it is empty, or **impute the columns** associated with the category instead of dropping them.



        5. **Response Metrics and Category Count**:

        - Dropping **Response Metric** columns is **not allowed** under any circumstances.

        - At least **two categories** must exist after imputation, or the Imputation will not proceed.

        - **Example**: If only **facebook** remains after selection, imputation will be halted.



        **Notes**:



        - The decision to drop a spends column will result in all associated columns being dropped. 

        - **Example**: Dropping `spends_facebook` will also drop all related columns like `media_impression_facebook` and `media_clicks_facebook`.

        """
        )

    # Imputation Warning Placeholder
    imputation_warning_placeholder = st.container()

    # Save the DataFrame and dictionary from the current session
    if st.button("Impute and Save", use_container_width=True):
        with st.spinner("Imputing ..."):
            with imputation_warning_placeholder:
                # Perform Imputation
                imputed_tool_df, group_dict, message = perform_imputation(
                    edited_imputation_df.copy(), tool_df.copy()
                )

                if imputed_tool_df is None:
                    st.warning(message, icon="โš ๏ธ")

                    # Log message
                    log_message("warning", message, "Data Import")

                else:
                    st.session_state["project_dct"]["data_import"][
                        "imputed_tool_df"
                    ] = imputed_tool_df
                    st.session_state["project_dct"]["data_import"][
                        "imputation_df"
                    ] = edited_imputation_df
                    st.session_state["project_dct"]["data_import"][
                        "group_dict"
                    ] = group_dict
                    st.session_state["project_dct"]["data_import"]["category_dict"] = (
                        create_ordered_category_dict(imputed_tool_df)
                    )

            if imputed_tool_df is not None:
                # Update DB
                update_db(
                    prj_id=st.session_state["project_number"],
                    page_nam="Data Import",
                    file_nam="project_dct",
                    pkl_obj=pickle.dumps(st.session_state["project_dct"]),
                    schema=schema,
                )

                # Success message
                st.success("Saved Successfully!", icon="๐Ÿ’พ")
                st.toast("Saved Successfully!", icon="๐Ÿ’พ")

                # Log message
                log_message("info", "Saved Successfully!", "Data Import")

    # Load saved data from project dictionary
    if st.session_state["project_dct"]["data_import"]["imputed_tool_df"] is None:
        st.stop()
    else:
        imputed_tool_df = st.session_state["project_dct"]["data_import"][
            "imputed_tool_df"
        ]
        group_dict = st.session_state["project_dct"]["data_import"]["group_dict"]
        category_dict = st.session_state["project_dct"]["data_import"]["category_dict"]

    # Channel Groupings
    st.subheader("Channel Groupings")
    display_groups(group_dict)
    st.write("##")  # Padding

    # Variable Categorization
    st.subheader("Variable Categorization")
    display_groups(category_dict)
    st.write("##")  # Padding

    # Final DataFrame
    st.subheader("Final DataFrame")
    st.dataframe(
        imputed_tool_df,
        hide_index=True,
        column_config={
            "date": st.column_config.DateColumn("date", format="YYYY-MM-DD")
        },
    )
    st.write("##")  # Padding

except Exception as e:
    # Capture the error details
    exc_type, exc_value, exc_traceback = sys.exc_info()
    error_message = "".join(
        traceback.format_exception(exc_type, exc_value, exc_traceback)
    )

    # Log message
    log_message("error", f"An error occurred: {error_message}.", "Data Import")

    # Display a warning message
    st.warning(
        "Oops! Something went wrong. Please try refreshing the tool or creating a new project.",
        icon="โš ๏ธ",
    )