Spaces:
Sleeping
Sleeping
File size: 9,382 Bytes
00b00eb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 |
import streamlit as st
import plotly.express as px
import numpy as np
import plotly.graph_objects as go
from sklearn.metrics import r2_score
from collections import OrderedDict
import plotly.express as px
import plotly.graph_objects as go
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
import streamlit as st
import re
from matplotlib.colors import ListedColormap
# from st_aggrid import AgGrid, GridOptionsBuilder
# from src.agstyler import PINLEFT, PRECISION_TWO, draw_grid
def format_numbers(x):
if abs(x) >= 1e6:
# Format as millions with one decimal place and commas
return f'{x/1e6:,.1f}M'
elif abs(x) >= 1e3:
# Format as thousands with one decimal place and commas
return f'{x/1e3:,.1f}K'
else:
# Format with one decimal place and commas for values less than 1000
return f'{x:,.1f}'
def line_plot(data, x_col, y1_cols, y2_cols, title):
"""
Create a line plot with two sets of y-axis data.
Parameters:
data (DataFrame): The data containing the columns to be plotted.
x_col (str): The column name for the x-axis.
y1_cols (list): List of column names for the primary y-axis.
y2_cols (list): List of column names for the secondary y-axis.
title (str): The title of the plot.
Returns:
fig (Figure): The Plotly figure object with the line plot.
"""
fig = go.Figure()
# Add traces for the primary y-axis
for y1_col in y1_cols:
fig.add_trace(go.Scatter(x=data[x_col], y=data[y1_col], mode='lines', name=y1_col, line=dict(color='#11B6BD')))
# Add traces for the secondary y-axis
for y2_col in y2_cols:
fig.add_trace(go.Scatter(x=data[x_col], y=data[y2_col], mode='lines', name=y2_col, yaxis='y2', line=dict(color='#739FAE')))
# Configure the layout for the secondary y-axis if needed
if len(y2_cols) != 0:
fig.update_layout(yaxis=dict(), yaxis2=dict(overlaying='y', side='right'))
else:
fig.update_layout(yaxis=dict(), yaxis2=dict(overlaying='y', side='right'))
# Add title if provided
if title:
fig.update_layout(title=title)
# Customize axes and legend
fig.update_xaxes(showgrid=False)
fig.update_yaxes(showgrid=False)
fig.update_layout(legend=dict(
orientation="h",
yanchor="top",
y=1.1,
xanchor="center",
x=0.5
))
return fig
def line_plot_target(df, target, title):
"""
Create a line plot with a trendline for a target column.
Parameters:
df (DataFrame): The data containing the columns to be plotted.
target (str): The column name for the y-axis.
title (str): The title of the plot.
Returns:
fig (Figure): The Plotly figure object with the line plot and trendline.
"""
# Calculate the trendline coefficients
coefficients = np.polyfit(df['date'].view('int64'), df[target], 1)
trendline = np.poly1d(coefficients)
fig = go.Figure()
# Add the target line plot
fig.add_trace(go.Scatter(x=df['date'], y=df[target], mode='lines', name=target, line=dict(color='#11B6BD')))
# Calculate and add the trendline plot
trendline_x = df['date']
trendline_y = trendline(df['date'].view('int64'))
fig.add_trace(go.Scatter(x=trendline_x, y=trendline_y, mode='lines', name='Trendline', line=dict(color='#739FAE')))
# Update layout with title and x-axis type
fig.update_layout(
title=title,
xaxis=dict(type='date')
)
# Add vertical lines at the start of each year
for year in df['date'].dt.year.unique()[1:]:
january_1 = pd.Timestamp(year=year, month=1, day=1)
fig.add_shape(
go.layout.Shape(
type="line",
x0=january_1,
x1=january_1,
y0=0,
y1=1,
xref="x",
yref="paper",
line=dict(color="grey", width=1.5, dash="dash"),
)
)
# Customize the legend
fig.update_layout(legend=dict(
orientation="h",
yanchor="top",
y=1.1,
xanchor="center",
x=0.5
))
return fig
def correlation_plot(df, selected_features, target):
"""
Create a correlation heatmap plot for selected features and target column.
Parameters:
df (DataFrame): The data containing the columns to be plotted.
selected_features (list): List of column names to be included in the correlation plot.
target (str): The target column name to be included in the correlation plot.
Returns:
fig (Figure): The Matplotlib figure object with the correlation heatmap plot.
"""
# Define custom colormap
custom_cmap = ListedColormap(['#08083B', "#11B6BD"])
# Select the relevant columns for correlation calculation
corr_df = df[selected_features]
corr_df = pd.concat([corr_df, df[target]], axis=1)
# Create a matplotlib figure and axis
fig, ax = plt.subplots(figsize=(16, 12))
# Generate the heatmap with correlation coefficients
sns.heatmap(corr_df.corr(), annot=True, cmap='Blues', fmt=".2f", linewidths=0.5, mask=np.triu(corr_df.corr()))
# Customize the plot
plt.xticks(rotation=45)
plt.yticks(rotation=0)
return fig
def summary(data, selected_feature, spends, Target=None):
"""
Create a summary table of selected features and optionally a target column.
Parameters:
data (DataFrame): The data containing the columns to be summarized.
selected_feature (list): List of column names to be included in the summary.
spends (str): The column name for the spends data.
Target (str, optional): The target column name for additional summary calculations. Default is None.
Returns:
sum_df (DataFrame): The summary DataFrame with formatted values.
"""
if Target:
# Summarize data for the target column
sum_df = data[selected_feature]
sum_df['Year'] = data['date'].dt.year
sum_df = sum_df.groupby('Year')[selected_feature].sum().reset_index()
# Calculate total sum and append to the DataFrame
total_sum = sum_df.sum(numeric_only=True)
total_sum['Year'] = 'Total'
sum_df = pd.concat([sum_df, total_sum.to_frame().T], axis=0, ignore_index=True).copy()
# Set 'Year' as index and format numbers
sum_df.set_index(['Year'], inplace=True)
sum_df = sum_df.applymap(format_numbers)
# Format spends columns as currency
spends_col = [col for col in sum_df.columns if any(keyword in col for keyword in ['spends', 'cost'])]
for col in spends_col:
sum_df[col] = sum_df[col].map(lambda x: f'${x}')
return sum_df
else:
# Include spends in the selected features
selected_feature.append(spends)
# Ensure unique features
selected_feature = list(set(selected_feature))
if len(selected_feature) > 1:
imp_clicks = selected_feature[1]
spends_col = selected_feature[0]
# Summarize data for the selected features
sum_df = data[selected_feature]
sum_df['Year'] = data['date'].dt.year
sum_df = sum_df.groupby('Year')[selected_feature].agg('sum')
# Calculate CPM/CPC
sum_df['CPM/CPC'] = (sum_df[spends_col] / sum_df[imp_clicks]) * 1000
# Calculate grand total and append to the DataFrame
sum_df.loc['Grand Total'] = sum_df.sum()
# Format numbers and replace NaNs
sum_df = sum_df.applymap(format_numbers)
sum_df.fillna('-', inplace=True)
sum_df = sum_df.replace({"0.0": '-', 'nan': '-'})
# Format spends columns as currency
sum_df[spends_col] = sum_df[spends_col].map(lambda x: f'${x}')
return sum_df
else:
# Summarize data for a single selected feature
sum_df = data[selected_feature]
sum_df['Year'] = data['date'].dt.year
sum_df = sum_df.groupby('Year')[selected_feature].agg('sum')
# Calculate grand total and append to the DataFrame
sum_df.loc['Grand Total'] = sum_df.sum()
# Format numbers and replace NaNs
sum_df = sum_df.applymap(format_numbers)
sum_df.fillna('-', inplace=True)
sum_df = sum_df.replace({"0.0": '-', 'nan': '-'})
# Format spends columns as currency
spends_col = [col for col in sum_df.columns if any(keyword in col for keyword in ['spends', 'cost'])]
for col in spends_col:
sum_df[col] = sum_df[col].map(lambda x: f'${x}')
return sum_df
def sanitize_key(key, prefix=""):
# Use regular expressions to remove non-alphanumeric characters and spaces
key = re.sub(r'[^a-zA-Z0-9]', '', key)
return f"{prefix}{key}"
|