Spaces:
Running
Running
File size: 18,032 Bytes
00b00eb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 |
import streamlit as st
st.set_page_config(
page_title="Response Curves",
page_icon="⚖️",
layout="wide",
initial_sidebar_state="collapsed",
)
# Disable +/- for number input
st.markdown(
"""
<style>
button.step-up {display: none;}
button.step-down {display: none;}
div[data-baseweb] {border-radius: 4px;}
</style>""",
unsafe_allow_html=True,
)
import sys
import json
import pickle
import traceback
import numpy as np
import pandas as pd
import plotly.express as px
import plotly.graph_objects as go
from post_gres_cred import db_cred
from sklearn.metrics import r2_score
from log_application import log_message
from utilities import project_selection, update_db, set_header, load_local_css
from utilities import (
get_panels_names,
get_metrics_names,
name_formating,
generate_rcs_data,
load_rcs_metadata_files,
)
schema = db_cred["schema"]
load_local_css("styles.css")
set_header()
# Initialize project name session state
if "project_name" not in st.session_state:
st.session_state["project_name"] = None
# Fetch project dictionary
if "project_dct" not in st.session_state:
project_selection()
st.stop()
# Display Username and Project Name
if "username" in st.session_state and st.session_state["username"] is not None:
cols1 = st.columns([2, 1])
with cols1[0]:
st.markdown(f"**Welcome {st.session_state['username']}**")
with cols1[1]:
st.markdown(f"**Current Project: {st.session_state['project_name']}**")
# Function to build s curve
def s_curve(x, K, b, a, x0):
return K / (1 + b * np.exp(-a * (x - x0)))
# Function to update the RCS parameters in the modified RCS metadata data
def modify_rcs_parameters(metrics_selected, panel_selected, channel_selected):
# Define unique keys for each parameter based on the selection
K_key = f"K_updated_key_{metrics_selected}_{panel_selected}_{channel_selected}"
b_key = f"b_updated_key_{metrics_selected}_{panel_selected}_{channel_selected}"
a_key = f"a_updated_key_{metrics_selected}_{panel_selected}_{channel_selected}"
x0_key = f"x0_updated_key_{metrics_selected}_{panel_selected}_{channel_selected}"
# Retrieve the updated parameters from session state
K_updated, b_updated, a_updated, x0_updated = (
st.session_state[K_key],
st.session_state[b_key],
st.session_state[a_key],
st.session_state[x0_key],
)
# Load the existing modified RCS data
rcs_data_modified = st.session_state["project_dct"]["response_curves"][
"modified_metadata_file"
]
# Update the RCS parameters for the selected metric and panel
rcs_data_modified[metrics_selected][panel_selected][channel_selected] = {
"K": K_updated,
"b": b_updated,
"a": a_updated,
"x0": x0_updated,
}
# Function to reset the parameters to their default values
def reset_parameters(
metrics_selected, panel_selected, channel_selected, original_channel_data
):
# Define unique keys for each parameter based on the selection
K_key = f"K_updated_key_{metrics_selected}_{panel_selected}_{channel_selected}"
b_key = f"b_updated_key_{metrics_selected}_{panel_selected}_{channel_selected}"
a_key = f"a_updated_key_{metrics_selected}_{panel_selected}_{channel_selected}"
x0_key = f"x0_updated_key_{metrics_selected}_{panel_selected}_{channel_selected}"
# Reset session state values to original data
del st.session_state[K_key]
del st.session_state[b_key]
del st.session_state[a_key]
del st.session_state[x0_key]
# Reset the modified metadata file with original parameters
rcs_data_modified = st.session_state["project_dct"]["response_curves"][
"modified_metadata_file"
]
# Update the parameters in the modified data to the original values
rcs_data_modified[metrics_selected][panel_selected][channel_selected] = {
"K": original_channel_data["K"],
"b": original_channel_data["b"],
"a": original_channel_data["a"],
"x0": original_channel_data["x0"],
}
# Update the modified metadata
st.session_state["project_dct"]["response_curves"][
"modified_metadata_file"
] = rcs_data_modified
# Function to generate updated RCS parameter DataFrame
@st.cache_data(show_spinner=False)
def updated_parm_gen(original_data, modified_data, metrics_selected, panel_selected):
# Retrieve the data for the selected metric and panel
original_data_selection = original_data[metrics_selected][panel_selected]
modified_data_selection = modified_data[metrics_selected][panel_selected]
# Initialize an empty list to hold the data for the DataFrame
data = []
# Iterate through each channel in the selected metric and panel
for channel in original_data_selection:
# Extract original parameters
K_o, b_o, a_o, x0_o = (
original_data_selection[channel]["K"],
original_data_selection[channel]["b"],
original_data_selection[channel]["a"],
original_data_selection[channel]["x0"],
)
# Extract modified parameters
K_m, b_m, a_m, x0_m = (
modified_data_selection[channel]["K"],
modified_data_selection[channel]["b"],
modified_data_selection[channel]["a"],
modified_data_selection[channel]["x0"],
)
# Check if any parameters differ
if (K_o != K_m) or (b_o != b_m) or (a_o != a_m) or (x0_o != x0_m):
# Append the data to the list only if there is a difference
data.append(
{
"Metric": name_formating(metrics_selected),
"Panel": name_formating(panel_selected),
"Channel": name_formating(channel),
"K (Original)": K_o,
"b (Original)": b_o,
"a (Original)": a_o,
"x0 (Original)": x0_o,
"K (Modified)": K_m,
"b (Modified)": b_m,
"a (Modified)": a_m,
"x0 (Modified)": x0_m,
}
)
# Create a DataFrame from the collected data
df = pd.DataFrame(data)
return df
# Function to create JSON file for RCS data
@st.cache_data(show_spinner=False)
def create_json_file():
return json.dumps(
st.session_state["project_dct"]["response_curves"]["modified_metadata_file"],
indent=4,
)
try:
# Page Title
st.title("Response Curves")
# Retrieve the list of all metric names from the specified directory
metrics_list = get_metrics_names()
# Check if there are any metrics available in the metrics list
if not metrics_list:
# Display a warning message to the user if no metrics are found
st.warning(
"Please tune at least one model to generate response curves data.",
icon="⚠️",
)
# Log message
log_message(
"warning",
"Please tune at least one model to generate response curves data.",
"Response Curves",
)
# Stop further execution as there is no data to process
st.stop()
# Widget columns
metric_col, channel_col, panel_col, save_progress_col = st.columns(4)
# Metrics Selection
metrics_selected = metric_col.selectbox(
"Response Metrics",
sorted(metrics_list),
format_func=name_formating,
key="response_metrics_selectbox",
index=0,
)
# Retrieve the list of all panel names for specified Metrics
panel_list = get_panels_names(metrics_selected)
# Panel Selection
panel_selected = panel_col.selectbox(
"Panel",
sorted(panel_list),
format_func=name_formating,
key="panel_selected_selectbox",
index=0,
)
# Save Progress
with save_progress_col:
st.write("####") # Padding
save_progress_placeholder = st.empty()
# Placeholder to display message and spinner
message_spinner_placeholder = st.container()
# Save page progress
with message_spinner_placeholder, st.spinner("Saving Progress ..."):
if save_progress_placeholder.button("Save Progress", use_container_width=True):
# Update DB
update_db(
prj_id=st.session_state["project_number"],
page_nam="Response Curves",
file_nam="project_dct",
pkl_obj=pickle.dumps(st.session_state["project_dct"]),
schema=schema,
)
# Store the message details in session state
message_spinner_placeholder.success(
"Progress saved successfully!", icon="💾"
)
st.toast("Progress saved successfully!", icon="💾")
# Log message
log_message("info", "Progress saved successfully!", "Response Curves")
# Check if the RCS metadata file does not exist
if (
st.session_state["project_dct"]["response_curves"]["original_metadata_file"]
is None
or st.session_state["project_dct"]["response_curves"]["modified_metadata_file"]
is None
):
# RCS metadata file does not exist. Generating new RCS data
generate_rcs_data()
# Log message
log_message(
"info",
"RCS metadata file does not exist. Generating new RCS data.",
"Response Curves",
)
# Load metadata files if they exist
original_data, modified_data = load_rcs_metadata_files()
# Retrieve the list of all channels names for specified Metrics and Panel
chanel_list_final = list(original_data[metrics_selected][panel_selected].keys())
# Channel Selection
channel_selected = channel_col.selectbox(
"Channel",
sorted(chanel_list_final),
format_func=name_formating,
key="selected_channel_name_selectbox",
)
# Extract original channel data for the selected metric, panel, and channel
original_channel_data = original_data[metrics_selected][panel_selected][
channel_selected
]
# Extract modified channel data for the same metric, panel, and channel
modified_channel_data = modified_data[metrics_selected][panel_selected][
channel_selected
]
# X and Y values for plotting
x = original_channel_data["x"]
y = original_channel_data["y"]
# Scaling factor for X values and range for S-curve plotting
power = original_channel_data["power"]
x_plot = original_channel_data["x_plot"]
# Original S-curve parameters
K_orig = original_channel_data["K"]
b_orig = original_channel_data["b"]
a_orig = original_channel_data["a"]
x0_orig = original_channel_data["x0"]
# Modified S-curve parameters (user-adjusted)
K_mod = modified_channel_data["K"]
b_mod = modified_channel_data["b"]
a_mod = modified_channel_data["a"]
x0_mod = modified_channel_data["x0"]
# Create a scatter plot for the original data points
fig = px.scatter(
x=x,
y=y,
title="Original and Modified S-Curve Plot",
labels={"x": "Spends", "y": name_formating(metrics_selected)},
)
# Add the modified S-curve trace
fig.add_trace(
go.Scatter(
x=x_plot,
y=s_curve(
np.array(x_plot) / 10**power,
K_mod,
b_mod,
a_mod,
x0_mod,
),
line=dict(color="red"),
name="Modified",
),
)
# Add the original S-curve trace
fig.add_trace(
go.Scatter(
x=x_plot,
y=s_curve(
np.array(x_plot) / 10**power,
K_orig,
b_orig,
a_orig,
x0_orig,
),
line=dict(color="rgba(0, 255, 0, 0.6)"), # Semi-transparent green
name="Original",
),
)
# Customize the layout of the plot
fig.update_layout(
title="Comparison of Original and Modified Response-Curves",
xaxis_title="Input (Clicks, Impressions, etc..)",
yaxis_title=name_formating(metrics_selected),
legend_title="Curve Type",
)
# Display s-curve
st.plotly_chart(fig, use_container_width=True)
# Calculate R-squared for the original curve
y_orig_pred = s_curve(np.array(x) / 10**power, K_orig, b_orig, a_orig, x0_orig)
r2_orig = r2_score(y, y_orig_pred)
# Calculate R-squared for the modified curve
y_mod_pred = s_curve(np.array(x) / 10**power, K_mod, b_mod, a_mod, x0_mod)
r2_mod = r2_score(y, y_mod_pred)
# Calculate the difference in R-squared
r2_diff = r2_mod - r2_orig
# Display R-squared metrics
st.write("## R-squared Comparison")
r2_col = st.columns(3)
r2_col[0].metric("R-squared (Original)", f"{r2_orig:.2f}")
r2_col[1].metric("R-squared (Modified)", f"{r2_mod:.2f}")
r2_col[2].metric("Difference in R-squared", f"{r2_diff:.2f}")
# Define unique keys for each parameter based on the selection
K_key = f"K_updated_key_{metrics_selected}_{panel_selected}_{channel_selected}"
b_key = f"b_updated_key_{metrics_selected}_{panel_selected}_{channel_selected}"
a_key = f"a_updated_key_{metrics_selected}_{panel_selected}_{channel_selected}"
x0_key = f"x0_updated_key_{metrics_selected}_{panel_selected}_{channel_selected}"
# Initialize session state keys if they do not exist
if K_key not in st.session_state:
st.session_state[K_key] = K_mod
if b_key not in st.session_state:
st.session_state[b_key] = b_mod
if a_key not in st.session_state:
st.session_state[a_key] = a_mod
if x0_key not in st.session_state:
st.session_state[x0_key] = x0_mod
# RCS parameters input
rsc_ip_col = st.columns(4)
with rsc_ip_col[0]:
K_updated = st.number_input(
"K",
step=0.001,
min_value=0.000000,
format="%.6f",
on_change=modify_rcs_parameters,
args=(metrics_selected, panel_selected, channel_selected),
key=K_key,
)
with rsc_ip_col[1]:
b_updated = st.number_input(
"b",
step=0.001,
min_value=0.000000,
format="%.6f",
on_change=modify_rcs_parameters,
args=(metrics_selected, panel_selected, channel_selected),
key=b_key,
)
with rsc_ip_col[2]:
a_updated = st.number_input(
"a",
step=0.001,
min_value=0.000000,
format="%.6f",
on_change=modify_rcs_parameters,
args=(metrics_selected, panel_selected, channel_selected),
key=a_key,
)
with rsc_ip_col[3]:
x0_updated = st.number_input(
"x0",
step=0.001,
min_value=0.000000,
format="%.6f",
on_change=modify_rcs_parameters,
args=(metrics_selected, panel_selected, channel_selected),
key=x0_key,
)
# Create columns for Reset and Download buttons
reset_download_col = st.columns(2)
with reset_download_col[0]:
if st.button(
"Reset",
use_container_width=True,
):
reset_parameters(
metrics_selected,
panel_selected,
channel_selected,
original_channel_data,
)
# Log message
log_message(
"info",
f"METRIC: {name_formating(metrics_selected)} ; PANEL: {name_formating(panel_selected)}, CHANNEL: {name_formating(channel_selected)} has been reset to its original value.",
"Response Curves",
)
st.rerun()
with reset_download_col[1]:
# Provide a download button for the modified RCS data
try:
# Create JSON file for RCS data
json_data = create_json_file()
st.download_button(
label="Download",
data=json_data,
file_name=f"{name_formating(metrics_selected)}_{name_formating(panel_selected)}_rcs_data.json",
mime="application/json",
use_container_width=True,
)
except:
# Download failed
pass
# Generate the DataFrame showing only non-matching parameters
updated_parm_df = updated_parm_gen(
original_data, modified_data, metrics_selected, panel_selected
)
# Display the DataFrame or show an informational message if no updates
if not updated_parm_df.empty:
st.write("## Parameter Comparison for Selected Metric and Panel")
st.dataframe(updated_parm_df, hide_index=True)
else:
st.info("No parameters are updated for the selected Metric and Panel")
except Exception as e:
# Capture the error details
exc_type, exc_value, exc_traceback = sys.exc_info()
error_message = "".join(
traceback.format_exception(exc_type, exc_value, exc_traceback)
)
# Log message
log_message("error", f"An error occurred: {error_message}.", "Response Curves")
# Display a warning message
st.warning(
"Oops! Something went wrong. Please try refreshing the tool or creating a new project.",
icon="⚠️",
)
|