File size: 17,432 Bytes
cde80d3 ea88218 cde80d3 ea88218 cde80d3 ea88218 cde80d3 ea88218 cde80d3 ea88218 cde80d3 ea88218 3119345 cde80d3 ea88218 cde80d3 ea88218 cde80d3 ea88218 cde80d3 ea88218 cde80d3 ea88218 cde80d3 ea88218 cde80d3 ea88218 cde80d3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 |
# import subprocess
# import sys
# def install_conda_package(package_name, channel=None):
# try:
# if channel:
# subprocess.check_call([sys.executable, "-m", "conda", "install", "-c", channel, package_name, "-y"])
# else:
# subprocess.check_call([sys.executable, "-m", "conda", "install", package_name, "-y"])
# except subprocess.CalledProcessError as e:
# # print(f"Failed to install {package_name}: {e}")
# # Example usage
# install_conda_package("plotly-orca", channel="plotly")
import streamlit as st
import pandas as pd
from sklearn.preprocessing import MinMaxScaler
import pickle
import Streamlit_functions as sf
from utilities import (load_authenticator)
from utilities_with_panel import (set_header,
overview_test_data_prep_panel,
overview_test_data_prep_nonpanel,
initialize_data,
load_local_css,
create_channel_summary,
create_contribution_pie,
create_contribuion_stacked_plot,
create_channel_spends_sales_plot,
format_numbers,
channel_name_formating)
import plotly.graph_objects as go
import streamlit_authenticator as stauth
import yaml
from yaml import SafeLoader
import time
from datetime import datetime,timedelta
from pptx import Presentation
from pptx.util import Inches
from io import BytesIO
import plotly.io as pio
import response_curves_model_quality as rc1
st.set_page_config(layout='wide')
load_local_css('styles.css')
set_header()
st.title("Model Result Overview")
def add_plotly_chart_to_slide(slide, fig, left, top, width, height):
img_stream = BytesIO()
pio.write_image(fig, img_stream, format='png')
slide.shapes.add_picture(img_stream, left, top, width, height)
def save_table(df,prs):
# Add a blank slide
slide = prs.slides.add_slide(prs.slide_layouts[6])
rows, cols = df.shape[0] + 1, df.shape[1] # +1 for the header row
table = slide.shapes.add_table(rows, cols, Inches(1), Inches(1), Inches(10), Inches(7)).table
# Set the header row
for col_idx, col_name in enumerate(df.columns):
table.cell(0, col_idx).text = col_name
# Add the DataFrame rows to the table
for row_idx, row in df.iterrows():
for col_idx, value in enumerate(row):
# # # print(value)
if isinstance(value, int):
table.cell(row_idx + 1, col_idx).text = str(value)
def save_ppt_file(fig1,fig2,fig3,fig4,fig6,fig7,figw,start_date,end_date,shares_df1,shares_df2):
# Initialize PowerPoint presentation
prs = Presentation()
# save_table(shares_df1,prs)
# save_table(shares_df2,prs)
# Slide 1: Model Quality with Chart
slide_1 = prs.slides.add_slide(prs.slide_layouts[6])
# title_1 = slide_1.shapes.title
# title_1.text = "Distribution Of Spends And Revenue"
# Add the Plotly chart to the slide
add_plotly_chart_to_slide(slide_1, sf.pie_contributions(start_date,end_date), Inches(0.25), Inches(0.25), width=Inches(9.25), height=Inches(6.75))
add_plotly_chart_to_slide(prs.slides.add_slide(prs.slide_layouts[6]), sf.pie_spend(start_date,end_date), Inches(0.25), Inches(0.25), width=Inches(9.25), height=Inches(6.75))
# Slide 2: Media Data Elasticity
slide_2 = prs.slides.add_slide(prs.slide_layouts[6])
# title_2 = slide_2.shapes.title
# title_2.text = "Media Contribution"
add_plotly_chart_to_slide(slide_2, fig2, Inches(0.25), Inches(0.25), width=Inches(9.25), height=Inches(6.75))
slide_3 = prs.slides.add_slide(prs.slide_layouts[6])
# title_3 = slide_3.shapes.title
# title_3.text = "Media Spends"
add_plotly_chart_to_slide(slide_3, fig3, Inches(0.25), Inches(0.25), width=Inches(9.25), height=Inches(6.75))
slide_4 = prs.slides.add_slide(prs.slide_layouts[6])
# title_4 = slide_4.shapes.title
# title_4.text = "CPP Distribution"
add_plotly_chart_to_slide(slide_4, fig4, Inches(0.25), Inches(0.25), width=Inches(9.25), height=Inches(6.75))
if figw != None:
slide_5 = prs.slides.add_slide(prs.slide_layouts[6])
# title_5 = slide_5.shapes.title
# title_5.text = "Change in MMM Estimated Revenue Contributions"
figw.update_layout(
# title="Distribution Of Spends"
title={
'text': "Change In MMM Estimated Revenue Contribution",
'font': {
'size': 24,
'family': 'Arial',
'color': 'black',
# 'bold': True
}
}
)
add_plotly_chart_to_slide(slide_5, figw, Inches(0.25), Inches(0.25), width=Inches(9.25), height=Inches(6.75))
else :
slide_5 = prs.slides.add_slide(prs.slide_layouts[5])
title_5 = slide_5.shapes.title
title_5.text = "Change in MMM Estimated Revenue Contributions"
slide_6 = prs.slides.add_slide(prs.slide_layouts[6])
# title_6 = slide_6.shapes.title
# title_6.text = "Base Decomposition"
add_plotly_chart_to_slide(slide_6, fig6, Inches(0.25), Inches(0.25), width=Inches(9.25), height=Inches(6.75))
slide_7 = prs.slides.add_slide(prs.slide_layouts[6])
# title_7 = slide_7.shapes.title
# title_7.text = "Media Decomposition"
add_plotly_chart_to_slide(slide_7, fig7, Inches(0.25), Inches(0.25), width=Inches(9.25), height=Inches(6.75))
# prs.save('MMM_Model_Result Overview.pptx')
# # print("PowerPoint slides created successfully.")
# Save to a BytesIO object
ppt_stream = BytesIO()
prs.save(ppt_stream)
ppt_stream.seek(0)
return ppt_stream.getvalue()
def get_random_effects(media_data, panel_col, mdf):
random_eff_df = pd.DataFrame(columns=[panel_col, "random_effect"])
for i, market in enumerate(media_data[panel_col].unique()):
# # # print(i, end='\r')
intercept = mdf.random_effects[market].values[0]
random_eff_df.loc[i, 'random_effect'] = intercept
random_eff_df.loc[i, panel_col] = market
return random_eff_df
def process_train_and_test(train, test, features, panel_col, target_col):
X1 = train[features]
ss = MinMaxScaler()
X1 = pd.DataFrame(ss.fit_transform(X1), columns=X1.columns)
X1[panel_col] = train[panel_col]
X1[target_col] = train[target_col]
if test is not None:
X2 = test[features]
X2 = pd.DataFrame(ss.transform(X2), columns=X2.columns)
X2[panel_col] = test[panel_col]
X2[target_col] = test[target_col]
return X1, X2
return X1
def mdf_predict(X_df, mdf, random_eff_df) :
X=X_df.copy()
X=pd.merge(X, random_eff_df[[panel_col,'random_effect']], on=panel_col, how='left')
X['pred_fixed_effect'] = mdf.predict(X)
X['pred'] = X['pred_fixed_effect'] + X['random_effect']
X.to_csv('Test/merged_df_contri.csv',index=False)
X.drop(columns=['pred_fixed_effect', 'random_effect'], inplace=True)
return X
target_col='Prospects'
target='Prospects'
# is_panel=False
# is_panel = st.session_state['is_panel']
#panel_col = [col.lower().replace('.','_').replace('@','_').replace(" ", "_").replace('-', '').replace(':', '').replace("__", "_") for col in st.session_state['bin_dict']['Panel Level 1'] ] [0]# set the panel column
panel_col='Panel'
date_col = 'date'
#st.write(media_data)
is_panel = True
# panel_col='markets'
date_col = 'date'
for k, v in st.session_state.items():
if k not in ['logout', 'login','config'] and not k.startswith('FormSubmitter'):
st.session_state[k] = v
authenticator = st.session_state.get('authenticator')
if authenticator is None:
authenticator = load_authenticator()
name, authentication_status, username = authenticator.login('Login', 'main')
auth_status = st.session_state['authentication_status']
if auth_status:
authenticator.logout('Logout', 'main')
is_state_initiaized = st.session_state.get('initialized',False)
if not is_state_initiaized:
a=1
with st.expander("View Channel Wise Spend And Revenue Analysis "):
# Create two columns for start date and end date input
col1, col2 = st.columns(2)
min_date,max_date = sf.get_date_range()
# st.write(min_date,max_date)
# min_date = datetime(2023, 1, 1)
# max_date = datetime(2024, 12, 31)
default_date1,default_date2 = sf.get_default_dates()
# st.write(default_date1,default_date2)
with col1:
start_date = st.date_input("Start Date: ",value=default_date1,min_value=min_date,
max_value=max_date)
with col2:
end_date = st.date_input("End Date: ",value = default_date2,min_value=min_date,
max_value=max_date)
# col1, col2 = st.columns(2)
# with col1:
# fig = sf.pie_spend(start_date,end_date)
# st.plotly_chart(fig,use_container_width=True)
# with col2:
# fig = sf.pie_contributions(start_date,end_date)
# st.plotly_chart(fig,use_container_width=True)
# st.header("Distribution of Spends and Contributions")
fig1 = sf.pie_charts(start_date,end_date)
st.plotly_chart(fig1,use_container_width=True)
## Channel Contribution Bar Chart
fig2 =sf.channel_contribution(start_date,end_date)
st.plotly_chart(fig2,use_container_width=True)
fig3 = sf.chanel_spends(start_date,end_date)
st.plotly_chart(fig3,use_container_width=True)
# Format first three rows in percentage format
# styled_df = sf.shares_table_func(shares_df)
# # styled_df = styled_df.round(0).astype(int)
# styled_df.iloc[:3] = (styled_df.iloc[:3]).astype(int)
# # Round next two rows to two decimal places
# styled_df.iloc[3:5] = styled_df.iloc[3:5].round(0).astype(str)
# st.table(styled_df)
shares_df = sf.shares_df_func(start_date,end_date)
shares_df1 = sf.shares_table_func(shares_df)
if "Effectiveness" in shares_df1.index:
shares_df1 = shares_df1.drop(index="Effectiveness")
st.dataframe(shares_df1,use_container_width=True)
shares_df2 = sf.eff_table_func(shares_df)
# st.dataframe(sf.eff_table_func(shares_df).style.format({"TOTAL SPEND": "{:,.0f}", "TOTAL SUPPORT": "{:,.0f}", "TOTAL CONTRIBUTION": "{:,.0f}"}),use_container_width=True)
### CPP CHART
fig4 = sf.cpp(start_date,end_date)
st.plotly_chart(fig4,use_container_width=True)
with st.expander("View Change in MMM Estimated Revenue Contributions Analysis"):
data_selection_type = st.radio("Select Input Type",["Compare Monthly Change", "Compare Custom Range"])
waterfall_start_date,waterfall_end_date = start_date,end_date
# Dropdown menu options
st.markdown("<h1 style='font-size:28px;'>Change in MMM Estimated Revenue Contributions</h1>", unsafe_allow_html=True)
if data_selection_type == "Compare Monthly Change":
options = [
"Month on Month",
"Year on Year"]
col1, col2 = st.columns(2)
# Create a dropdown menu
with col1:
selected_option = st.selectbox('Select a comparison', options)
with col2:
st.markdown("""</br>""",unsafe_allow_html=True)
if selected_option == "Month on Month" :
st.write("######")
st.markdown(
f"""
<div style="padding: 5px; border-radius: 5px; background-color: #FFFFE0; width: fit-content; display: inline-block;">
<strong> Comparision of current month spends to previous month spends</strong>
</div>
""",
unsafe_allow_html=True
)
else :
st.markdown(
f"""
<div style="padding: 5px; border-radius: 5px; background-color: #FFFFE0; width: fit-content; display: inline-block;">
<strong> Comparision of current month spends to the same month in previous year</strong>
</div>
""",
unsafe_allow_html=True
)
# Waterfall chart
def get_month_year_list(start_date, end_date):
# Generate a range of dates from start_date to end_date with a monthly frequency
dates = pd.date_range(start=start_date, end=end_date, freq='MS') # 'MS' is month start frequency
# Extract month and year from each date and create a list of tuples
month_year_list = [(date.month, date.year) for date in dates]
return month_year_list
def get_start_end_dates(month, year):
start_date = datetime(year, month, 1).date()
if month == 12:
end_date = datetime(year + 1, 1, 1).date() - timedelta(days=1)
else:
end_date = datetime(year, month + 1, 1).date() - timedelta(days=1)
return start_date, end_date
month_year_list = get_month_year_list(start_date, end_date)
dropdown_options = [f"{date.strftime('%B %Y')}" for date in pd.date_range(start=start_date, end=end_date, freq='MS')]
waterfall_option = st.selectbox("Select a month:", dropdown_options)
waterfall_date = datetime.strptime(waterfall_option, "%B %Y")
waterfall_month = waterfall_date.month
waterfall_year = waterfall_date.year
waterfall_start_date, waterfall_end_date = get_start_end_dates(waterfall_month, waterfall_year)
# st.write("abc")
# figw = sf.waterfall(waterfall_start_date,waterfall_end_date)
figw= sf.waterfall(waterfall_start_date,waterfall_end_date,selected_option)
st.plotly_chart(figw,use_container_width=True)
elif data_selection_type == "Compare Custom Range":
col1, col2 = st.columns(2)
min_date,max_date = sf.get_date_range()
with col1:
st.write("Select Time Period 1")
# sc1, sc2 = st.columns(2)
# with sc1:
waterfall_start_date1 = st.date_input("Start Date 1: ",value=start_date,min_value=min_date,
max_value=max_date)
# with sc2:
waterfall_end_date1 = st.date_input("End Date 1: ",value = end_date,min_value=min_date,
max_value=max_date)
with col2:
st.write("Select Time Period 2")
ec1, ec2 = st.columns(2)
with ec1:
waterfall_start_date2 = st.date_input("Start Date 2: ",value=end_date-timedelta(days = -1),min_value=min_date,
max_value=max_date)
with ec2:
diff = min((start_date-end_date).days,-30)
waterfall_end_date2 = st.date_input("End Date 2: ",value = start_date,min_value=min_date,
max_value=max_date)
try:
figw= sf.waterfall2(waterfall_start_date1,waterfall_end_date1,waterfall_start_date2,waterfall_end_date2)
st.plotly_chart(figw,use_container_width=True)
except:
st.warning("Previous data does not exist")
# Waterfall table
# shares_df = sf.shares_df_func(waterfall_start_date,waterfall_end_date)
st.table(sf.waterfall_table_func(shares_df).style.format("{:.0%}"))
with st.expander("View Decomposition Analysis"):
### Base decomp CHART
fig6 = sf.base_decomp()
st.plotly_chart(fig6,use_container_width=True)
### Media decomp CHART
fig7 = sf.media_decomp()
st.plotly_chart(fig7,use_container_width=True)
if st.button("Prepare Download Of Analysis"):
ppt_file = save_ppt_file(fig1,fig2,fig3,fig4,fig6,fig7,figw,start_date,end_date,shares_df1,shares_df2)
# Add a download button
st.download_button(
label="Download Analysis",
data=ppt_file,
file_name="MMM_Model_Result Overview.pptx",
mime="application/vnd.openxmlformats-officedocument.presentationml.presentation"
)
|