CV_Accelerator / pages /2_Image_Processing.py
samkeet's picture
First Commit
3d90a2e verified
# Set the page config
import streamlit as st
st.set_page_config(
page_title="Image Processing",
page_icon=":open_file_folder:",
layout="wide",
initial_sidebar_state="collapsed",
)
# Importing necessary libraries
import cv2
import utils
import numpy as np
import Functions.image_processing_functions as image_processing_functions
# Load image processing technique parameters and details from an Excel file
image_processing_params_df = utils.load_data_from_excel(
"packages_db.xlsx", "image_processing_parameters"
)
image_processing_details_df = utils.load_data_from_excel(
"packages_db.xlsx", "image_processing_details"
)
# Display the page title
st.title("Image Processing")
# # Clear the Streamlit session state on the first load of the page
# utils.clear_session_state_on_first_load("image_processing_clear")
# List of session state keys to initialize if they are not already present
session_state_keys = [
"file_uploader_key_processing",
"select_processing_technique_key_processing",
]
# Iterate through each session state key
for key in session_state_keys:
# Check if the key is not already in the session state
if key not in st.session_state:
# Initialize the key with a dictionary containing itself set to True
st.session_state[key] = {key: True}
# Initialize session state variables if not present
if "validation_triggered" not in st.session_state:
st.session_state["validation_triggered"] = False
if "uploaded_files_cache_processing" not in st.session_state:
st.session_state["uploaded_files_cache_processing"] = False
if "zip_data_processing" not in st.session_state:
st.session_state["zip_data_processing"] = ""
if "widget_states" not in st.session_state:
st.session_state["widget_states"] = {}
# Interface for uploading an images and labels
utils.display_file_uploader(
"uploaded_files",
"Choose images and labels...",
st.session_state["file_uploader_key_processing"],
st.session_state["uploaded_files_cache_processing"],
)
# Note to users
st.markdown(
"""
<div style='text-align: justify;'>
<b>Note to Users:</b>
<ul>
<li>The <i>first uploaded image</i> will be used for demonstration purposes and to validate parameters for image processing techniques.</li>
<li>Uploading <i>labels is optional</i>. If no labels are uploaded, the output will consist solely of processed images.</li>
<li>When moving to another page or if you wish to upload a new set of images and labels, don't forget to hit the <b>Reset</b> button. This helps in faster computation and frees up unused memory, ensuring smoother operation.</li>
</ul>
</div>
""",
unsafe_allow_html=True,
)
# List of session state variables to initialize
session_vars = [
"is_valid",
"image_files",
"label_files",
"first_image_file",
"first_label_file",
]
# Initialize each variable as None if it doesn't exist in the session state
for var in session_vars:
if var not in st.session_state:
st.session_state[var] = None
# Create two columns
col1, col2 = st.columns(2)
# Button to trigger validation
if (
col1.button("Validate Input", use_container_width=True)
or st.session_state["widget_states"].get("validate_input_button", False)
) and not st.session_state["validation_triggered"]:
st.session_state["validation_triggered"] = True
st.session_state["uploaded_files_cache_processing"] = True
(
st.session_state["is_valid"],
st.session_state["image_files"],
st.session_state["label_files"],
st.session_state["first_image_file"],
st.session_state["first_label_file"],
) = image_processing_functions.check_valid_labels(
st.session_state["uploaded_files"]
)
elif st.session_state["validation_triggered"]:
pass
else:
st.session_state["is_valid"] = False
st.warning(
"Please upload images and labels and click **Validate Input**.", icon="⚠️"
)
with col2:
# Check if the 'Reset' button is pressed
if st.button("Reset", use_container_width=True):
# Toggle the keys for file uploader and processing technique to reset their states
current_value = st.session_state["file_uploader_key_processing"][
"file_uploader_key_processing"
]
updated_value = not current_value # Invert the current value
# List of session state keys that need to be reset
session_state_keys = [
"file_uploader_key_processing",
"select_processing_technique_key_processing",
]
# Iterate through each session state key
for session_state_key in session_state_keys:
# Update each key in the session state with the toggled value
st.session_state[session_state_key] = {session_state_key: updated_value}
# Clear all other session state keys except for widget_state_keys
for key in list(st.session_state.keys()):
if key not in session_state_keys:
del st.session_state[key]
# Clear global variables except for protected and Streamlit module
global_vars = list(globals().keys())
vars_to_delete = [
var for var in global_vars if not var.startswith("_") and var != "st"
]
for var in vars_to_delete:
del globals()[var]
# Clear the Streamlit caches
st.cache_resource.clear()
st.cache_data.clear()
# Rerun the app to reflect the reset state
st.rerun()
# Interface to select image processing techniques
available_image_processings = image_processing_details_df["Name"]
# Mapping each image processing techniques to its corresponding image types
input_mapping_dict = utils.technique_image_input_mapping(
available_image_processings, image_processing_details_df
)
# Present the option to select image processing techniques only if the uploaded files are validated successfully
if st.session_state["is_valid"]:
selected_image_processings = st.multiselect(
"Select image processing technique(s)",
available_image_processings,
key=st.session_state["select_processing_technique_key_processing"],
)
# Read the first uploaded image into a NumPy array
st.session_state["first_image_file"].seek(0) # Reset file pointer to start
file_bytes_first_image = np.frombuffer(
st.session_state["first_image_file"].read(), dtype=np.uint8
)
uploaded_first_image = cv2.cvtColor(
cv2.imdecode(file_bytes_first_image, cv2.IMREAD_COLOR), cv2.COLOR_BGR2RGB
)
# Resize the image
uploaded_first_image = cv2.resize(uploaded_first_image, (256, 256))
else:
# Reset selected techniques to empty if input validation fails
selected_image_processings = []
#######################################################################################################
# Build custom image processing pipeline
#######################################################################################################
# Store parameters for each selected image processing technique
image_processings_params = {}
# Initialize a flag to track if any error exists
error_in_parameters = False
# Loop through each selected image processing techniques to set up parameters
for image_processing in selected_image_processings:
with st.expander(f"{image_processing}"):
# Retrieve image processing details from the database
image_processing_info = image_processing_details_df[
image_processing_details_df["Name"] == image_processing
]
# Set up columns for displaying details and image placeholders
details_col, image_col = st.columns([7, 3])
with details_col:
# Display the description for the image processing technique
image_processing_description = (
image_processing_info["Description"].iloc[0]
if not image_processing_info.empty
else "No description available."
)
st.markdown(
f"<div style='text-align: justify;'><b>Description:</b> {image_processing_description}</div>",
unsafe_allow_html=True,
)
# Display the category for the image processing
image_processing_category = (
image_processing_info["Category"].iloc[0]
if not image_processing_info.empty
else "Unknown"
)
st.write("Category:", image_processing_category)
# Retrieve the source code link for the image processing
image_processing_source_code = (
image_processing_info["Source Code Link"].iloc[0]
if not image_processing_info.empty
else "www.google.com"
)
# Set up columns for displaying source code button and custom settings checkbox
source_code_col, custo_setting_col = st.columns(2)
source_code_col.link_button("Source Code", image_processing_source_code)
# Toggle for custom settings
custom_settings = custo_setting_col.checkbox(
f"Customize {image_processing}", key=f"toggle_{image_processing}"
)
with image_col:
# Create two columns
col1, col2 = st.columns(2)
original_image_placeholder = col1.container(height=200, border=False)
processed_image_placeholder = col2.container(height=200, border=False)
# Apply custom settings
if custom_settings:
# Retrieve parameters for the image processing
params_df = image_processing_params_df[
image_processing_params_df["Name"] == image_processing
]
# Process parameters for each image processing technique and store in a dictionary
image_processings_params[image_processing] = utils.process_image_parameters(
params_df, image_processing
)
else:
# Use default settings if customization is not selected
image_processings_params[image_processing] = utils.get_default_params(
image_processing
)
# Check for errors in the selected parameters by applying them to a sample image
(
error_flag,
processed_first_image,
) = image_processing_functions.apply_and_test_image_processing(
image_processing,
image_processings_params[image_processing],
uploaded_first_image,
input_mapping_dict[image_processing],
)
# If there is an error in the parameters, set the global error flag
if error_flag:
error_in_parameters = True
else:
# If no error, display the original and processed images side by side
# Display the original and processed images in their respective placeholders
with original_image_placeholder:
st.image(
uploaded_first_image,
caption="Original Image",
use_column_width=True,
clamp=True,
)
with processed_image_placeholder:
st.image(
processed_first_image,
caption="Processed Image",
use_column_width=True,
clamp=True,
)
# Update the base image with the previously processed image output
uploaded_first_image = processed_first_image
#######################################################################################################
# Display selected image processing technique parameters as DataFrame
#######################################################################################################
# Check if any image processings have been defined
if (image_processings_params.keys()) and (not error_in_parameters):
# Create a dropdown for selecting an image processing technique or 'All'
selected_image_processing = st.selectbox(
"Select image processing technique",
options=["All"] + list(image_processings_params.keys()),
)
else:
selected_image_processing = None
# Create the DataFrame from the accumulated data
image_processings_df = image_processing_functions.create_image_processings_dataframe(
image_processings_params, image_processing_params_df
)
image_processings_df["Value"] = image_processings_df["Value"].astype(
str
) # Ensure consistent data types and handle potential serialization issues
# Filter the DataFrame based on the selected image processing
if selected_image_processing != "All":
filtered_image_processings_df = image_processings_df[
image_processings_df["image_processing"] == selected_image_processing
]
else:
filtered_image_processings_df = image_processings_df
# Check if the filtered dataframe is not empty and the selected configurations are valid
if (not filtered_image_processings_df.empty) and (not error_in_parameters):
# Display the DataFrame in Streamlit and use the full width of the container
st.dataframe(filtered_image_processings_df, use_container_width=False)
# Display code and description
code_placeholder = st.empty()
#######################################################################################################
# Process images and download processed images
#######################################################################################################
# Proceed if inputs are valid, techniques selected, and no errors in configurations
if (
st.session_state["is_valid"]
and (len(selected_image_processings) > 0)
and not error_in_parameters
):
# Create two columns
col1, col2 = st.columns(2)
# Allow user to specify the number of variations to be generated
num_variations = col1.number_input(
"Set the number of variations to be generated",
min_value=1,
max_value=3,
step=1,
)
# Checkbox to include original images and labels in the output
with col2:
for top_padding in range(2): # Top padding
st.write("")
include_original = st.checkbox(
"Include original images and labels in output", value=False
)
# Display code and download once all inputs are available
with code_placeholder:
# Generate the code with the function
if len(st.session_state["label_files"]) == 0:
generated_code = utils.generate_python_code_images(
image_processings_params,
num_variations,
include_original,
)
else:
generated_code = (
image_processing_functions.generate_python_code_images_labels(
image_processings_params,
num_variations,
include_original,
)
)
# Display the generated Python code with a description and provide a download button in the Streamlit app
image_processing_functions.display_code_and_download_button(generated_code)
# Create two columns
col1, col2 = st.columns(2)
# Add a button for the user to confirm their selections and proceed with processing
if col1.button("Accept and Process", use_container_width=True):
# Call the function and store the results
image_processing_functions.process_images_and_labels(
st.session_state["image_files"],
st.session_state["label_files"],
selected_image_processings,
image_processings_params,
num_variations,
include_original,
)
# Download button
col2.download_button(
label="Download",
data=st.session_state["zip_data_processing"],
file_name="processed_images.zip",
mime="application/zip",
use_container_width=True,
disabled=False,
)
else:
if (len(selected_image_processings) == 0) and st.session_state["is_valid"]:
# Inform the user that no image processing techniques have been selected
st.warning("Please select at least one image processing technique.", icon="⚠️")
if error_in_parameters and st.session_state["is_valid"]:
# Inform the user that there are errors in parameters
st.warning(
"There are errors in the image processing parameters. Please review your selections.",
icon="⚠️",
)
#######################################################################################################
# Display original and processed images
#######################################################################################################
if (
"image_repository_preprocessing" in st.session_state
and "processed_image_mapping_procesing" in st.session_state
):
# Number of unique images
num_unique_images = len(st.session_state["unique_images_names"])
if num_unique_images > 1:
# Create a slider to select an image index from the processed image mapping
selected_image_index = st.slider(
"Select an Image",
min_value=1,
max_value=num_unique_images, # Set the maximum to the number of unique images
step=1,
)
else:
selected_image_index = 1
# Retrieve the name of the selected original image using the slider index
selected_original_image_name = st.session_state["unique_images_names"][
selected_image_index - 1
]
# Retrieve the names of all processed variants for the selected original image
processed_variant_names = st.session_state["processed_image_mapping_procesing"].get(
selected_original_image_name, []
)
# Combine the original image name with its processed variants
all_image_names = [selected_original_image_name] + processed_variant_names
# Number of images and columns
num_images = len(all_image_names)
num_columns = 4
# Display images in a grid of 4 columns and dynamic number of rows
for i in range(0, num_images, num_columns):
# Create a row of columns
cols = st.columns(num_columns)
for j in range(num_columns):
# Calculate the current image index
image_index = i + j
if image_index < num_images:
# Get the image name and data from the repository
image_name = all_image_names[image_index]
image_data = st.session_state["image_repository_preprocessing"][
image_name
]["image"]
# Display the image in the respective column with caption
with cols[j]:
st.image(
image_data,
clamp=True,
caption=image_name,
use_column_width=True,
)
# if st.button("Run"):
# utils.button_click(on_click=None)