Spaces:
Sleeping
Sleeping
File size: 73,142 Bytes
3d90a2e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 |
# Importing necessary libraries
import io
import os
import utils
import random
import shutil
import zipfile
import numpy as np
import pandas as pd
import streamlit as st
from ultralytics import YOLO
import plotly.graph_objs as go
from onnx.defs import onnx_opset_version
from plotly.subplots import make_subplots
# Function to get the dataset directory path based on the specified path type
def get_path(path_type):
main_directory_path = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
if path_type == "train":
return os.path.join(
main_directory_path,
"model_data",
"input_files",
"datasets",
"train",
)
elif path_type == "val":
return os.path.join(
main_directory_path,
"model_data",
"input_files",
"datasets",
"val",
)
elif path_type == "test":
return os.path.join(
main_directory_path,
"model_data",
"input_files",
"datasets",
"test",
)
elif path_type == "config":
return os.path.join(main_directory_path, "model_data", "input_files")
elif path_type == "models":
return os.path.join(main_directory_path, "model_data", "models")
elif path_type == "output":
return os.path.join(main_directory_path, "model_data", "output_files")
else:
raise ValueError(f"Invalid path_type: {path_type}")
# Function to check minimum images in training and validation set
def check_min_images(total_files, train_pct, val_pct, test_pct):
# Calculate raw counts based on percentages
train_count = int(total_files * train_pct / 100)
val_count = int(total_files * val_pct / 100)
test_count = int(total_files * test_pct / 100)
# Ensure that both train and validation have at least one file
if train_count < 1 or val_count < 1:
return False
return True
# Function to clear data a folders
def clear_data_folders():
base_path = "./model_data/input_files/datasets"
for folder in ["train", "test", "val"]:
for subfolder in ["images", "labels"]:
folder_path = os.path.join(base_path, folder, subfolder)
if os.path.exists(folder_path):
shutil.rmtree(folder_path)
os.makedirs(folder_path, exist_ok=True)
# Function to pairs image and label files based on their filenames
def pair_files(files):
paired_files = {}
for file in files:
# Split the filename into name and extension
file_name, file_ext = os.path.splitext(file.name)
# Initialize a dict for each unique file name
if file_name not in paired_files:
paired_files[file_name] = {"image": None, "label": None}
# Assign the file to its corresponding type (image or label) based on extension
if file_ext.lower() in [".jpg", ".png"]:
paired_files[file_name]["image"] = file
elif file_ext.lower() == ".txt":
paired_files[file_name]["label"] = file
return paired_files
# Function to split the paired files into training, testing, and validation sets based on specified percentages and saves them in corresponding folders
def split_and_save_files(paired_files, train_pct, test_pct):
base_path = "./model_data/input_files/datasets"
all_keys = list(paired_files.keys())
random.shuffle(all_keys)
# Determine the size of each dataset split
total_files = len(all_keys)
train_size = int(total_files * train_pct / 100)
test_size = int(total_files * test_pct / 100)
# Split the file keys into training, testing, and validation sets
train_keys = all_keys[:train_size]
test_keys = all_keys[train_size : train_size + test_size]
val_keys = all_keys[train_size + test_size :]
# Iterate through each split and save the files to their respective directories
for folder_name, keys in zip(
["train", "test", "val"], [train_keys, test_keys, val_keys]
):
for key in keys:
image_file = paired_files[key]["image"]
label_file = paired_files[key]["label"]
# Save the image and label files if they exist
if image_file:
save_file_to_folder(
image_file, os.path.join(base_path, folder_name, "images")
)
if label_file:
save_file_to_folder(
label_file, os.path.join(base_path, folder_name, "labels")
)
# Function to save an individual file to a specified folder
def save_file_to_folder(file, folder_path):
os.makedirs(folder_path, exist_ok=True)
file_path = os.path.join(folder_path, file.name)
with open(file_path, "wb") as f:
f.write(file.getbuffer())
# Function to save uploaded files to a specific folder within the base path
def save_files_to_folder(uploaded_files, folder_name):
# Define the base path for saving the files
base_path = "./model_data/input_files/datasets"
# Iterate through each uploaded file
for file in uploaded_files:
if file:
# Determine the file type based on file extension
file_type = (
"images"
if os.path.splitext(file.name)[1].lower() in [".jpg", ".png"]
else "labels"
)
# Save the file to the appropriate subfolder (images or labels)
save_file_to_folder(file, os.path.join(base_path, folder_name, file_type))
# Function to validate each line in the label file for bounding box data
def check_bboxes_label(label_file, class_dict):
for line in label_file:
try:
# Decode the line, strip whitespace, split into parts, and convert each part to float
class_id, x_center, y_center, width, height = map(
float, line.decode().strip().split()
)
# Check if bounding box coordinates and class ID are valid
if not (
0 <= x_center <= 1
and 0 <= y_center <= 1
and 0 <= width <= 1
and 0 <= height <= 1
and class_id in class_dict.keys()
):
# Return False if any condition is not met (invalid data)
return False
except Exception as e:
# Return False in case of any exception (e.g., parsing error)
return False
# Return True if all lines in the label file pass the validation
return True
# Function to validate each line in the label file for mask data
def check_masks_label(label_file, class_dict):
for line in label_file:
try:
# Decode the line and split into parts: class ID and points
parts = line.decode().strip().split()
class_id = int(
parts[0]
) # Convert the first part to an integer for class ID
points = [
float(p) for p in parts[1:]
] # Convert the remaining parts to float for coordinates
# Check if class ID exists in the class dictionary and all points are within [0, 1]
if not (class_id in class_dict.keys() and all(0 <= p <= 1 for p in points)):
return False # Return False if validation fails
except Exception as e:
# Return False in case of any exception (e.g., parsing error)
return False
return True # Return True if all lines in the label file pass the validation
# Function to read label from YOLO format
def read_label(file, selected_option, class_dict):
# Read the content of the file
file_content = file.readlines()
# Check and validate bounding box labels if the selected option is 'Bboxes'
if selected_option == "Bboxes":
return check_bboxes_label(file_content, class_dict) # Validate bbox labels
# Check and validate mask labels if the selected option is 'Masks'
elif selected_option == "Masks":
return check_masks_label(file_content, class_dict) # Validate mask labels
# Return False if the selected option is neither 'Bboxes' nor 'Masks'
return False
# Function to check for duplicates
def check_file_duplicates(file_names):
unique_names = set(file_names)
return len(unique_names) == len(file_names)
# Function to validates the uploaded image and label files
def validate_files(image_names, label_names):
# Check for duplicate filenames in both images and labels
if not check_file_duplicates(image_names) or not check_file_duplicates(label_names):
# Show warning if duplicates are found
st.warning(
"Duplicate file names detected. Please ensure each image and label has a unique name.",
icon="β οΈ",
)
return False # Return False indicating validation failed
# Check if the number of images matches the number of labels
if len(image_names) != len(label_names):
# Show warning if counts don't match
st.warning(
"Count Mismatch: The number of uploaded images and labels does not match.",
icon="β οΈ",
)
return False # Return False indicating validation failed
# Display a success message if the above checks pass
st.info(
f"Validated: {len(image_names)} images and labels successfully matched.",
icon="β
",
)
return True # Return True indicating successful validation
# Function to check labels format
@st.cache_resource(show_spinner=False)
def check_valid_labels(uploaded_files, selected_option, class_dict):
# Check if no files were uploaded
if len(uploaded_files) == 0:
st.warning("Please upload images and labels.", icon="β οΈ")
return False
# Initialize lists to store names of image and label files
image_names, label_names = [], []
# Initialize a progress bar and progress text
progress_bar = st.progress(0)
progress_text = st.empty()
total_files = len(uploaded_files)
# Iterate over each uploaded file
for index, file in enumerate(uploaded_files):
# Reset the file pointer to the beginning
file.seek(0)
# Check file type and categorize as image or label
if file.type in ["image/jpeg", "image/png"]:
# Add to image names list if file is an image
image_names.append(file.name)
elif file.type == "text/plain":
# Read and validate label file
if not read_label(file, selected_option, class_dict):
# Show warning if label format or data is invalid
st.warning(
f"Invalid label format or data in file: {file.name}", icon="β οΈ"
)
return False
# Add to label names list if file is a valid label
label_names.append(file.name)
# Update progress bar and display current progress
progress_percentage = (index + 1) / total_files
progress_bar.progress(progress_percentage)
progress_text.text(f"Validating file {index + 1} of {total_files}")
# Remove progress bar and progress text after processing
progress_bar.empty()
progress_text.empty()
# Validate if all images have corresponding labels and vice versa
return validate_files(image_names, label_names)
# Function to get training, validation and export configurations
def get_training_validation_export_configuration(selected_training):
with st.expander("Training Configuration"):
# User Instruction for Default Values
st.markdown(
"""
<div style='text-align: justify;'>
<b>User Instructions:</b> If you are unsure about the specific values to use for training parameters, it is
recommended to stick with the default values provided. These defaults are carefully chosen to provide a good balance
between performance and resource utilization for most scenarios. You can always come back and tweak these settings
once you have more experience or specific requirements for your model training.
</div>
""",
unsafe_allow_html=True,
)
# Padding
utils.top_padding(2)
# Training Configuration
st.markdown("### Training Configuration")
# Model Selection
st.write("**Model Selection**")
selected_model = st.selectbox(
"Choose a YOLOv8 model variant", list(utils.models_info.keys())
)
model_spec = utils.models_info[selected_model]
spec_string = (
"<div style='text-align: justify;'>"
f"The selected model, <b>{selected_model}</b>, is benchmarked on an image size of 640x640 pixels. It has a Mean Average Precision (mAPval) of <b>{model_spec['mAPval']}</b>, "
f"operates with a speed of <b>{model_spec['speed_cpu']} ms</b> on CPU (ONNX) and <b>{model_spec['speed_gpu']} ms</b> on GPU (TensorRT). "
f"It consists of approximately <b>{model_spec['params']} million</b> parameters and requires about <b>{model_spec['flops']} billion</b> Floating Point Operations (FLOPs)."
"</div>"
)
st.markdown(spec_string, unsafe_allow_html=True)
# Spacer
st.markdown("---")
# Time Configuration
st.write("**Time Configuration**")
col1_time, col2_time = st.columns([1, 3])
with col1_time:
top_padding_time = st.container()
time_allow = st.checkbox("Enable Time", value=False)
if time_allow:
with top_padding_time:
utils.top_padding(2)
time = col2_time.number_input(
"Time (hours)", min_value=1, max_value=100, value=1, step=1
)
else:
time = None
st.markdown(
"<div style='text-align: justify;'>Set the training duration in hours. This option overrides the epochs setting. Useful for limiting training time in scenarios with constrained resources.</div>",
unsafe_allow_html=True,
)
# Spacer
st.markdown("---")
# Epochs Configuration
st.write("**Epochs Configuration**")
epochs = st.number_input(
"Epochs", min_value=1, max_value=1000, value=50, step=10
)
st.markdown(
"<div style='text-align: justify;'>Define the number of epochs for the training process. An epoch represents a complete pass over the entire dataset. More epochs can improve accuracy but increase training time.</div>",
unsafe_allow_html=True,
)
# Spacer
st.markdown("---")
# Patience Configuration
st.write("**Patience Configuration**")
col1_patience, col2_patience = st.columns([1, 3])
with col1_patience:
top_padding_patience = st.container()
patience_allow = st.checkbox("Enable Patience", value=False)
if patience_allow:
with top_padding_patience:
utils.top_padding(2)
patience = col2_patience.number_input(
"Patience (epochs)", min_value=5, max_value=50, value=5, step=1
)
else:
patience = None
st.markdown(
"<div style='text-align: justify;'>Configure the early stopping mechanism. Patience denotes the number of epochs to wait for improvement in performance before stopping the training, helping to avoid overfitting.</div>",
unsafe_allow_html=True,
)
# Spacer
st.markdown("---")
# Batch Size Configuration
st.write("**Batch Size Configuration**")
batch = st.number_input(
"Batch Size", min_value=-1, max_value=128, value=-1, step=1
)
st.markdown(
"<div style='text-align: justify;'>Determine the number of images processed together in one pass (batch). A larger batch size can lead to faster training but requires more memory. Use -1 for automatic batch sizing.</div>",
unsafe_allow_html=True,
)
# Spacer
st.markdown("---")
# Image Size Configuration
st.write("**Image Size Configuration**")
imgsz = st.number_input(
"Image Size (pixels)", min_value=64, max_value=4096, value=640, step=32
)
st.markdown(
"<div style='text-align: justify;'>Specify the size of the input images. Larger images can capture more details but require more computational resources. The size is typically a square dimension, like 640x640 pixels.</div>",
unsafe_allow_html=True,
)
# Spacer
st.markdown("---")
# Cache Configuration
st.write("**Cache Configuration**")
cache = st.selectbox("Cache Option", ["False", "True/ram", "disk"])
st.markdown(
"<div style='text-align: justify;'>Choose a caching method for data loading to speed up training. 'True/ram' caches data in RAM, 'disk' caches on disk, and 'False' disables caching.</div>",
unsafe_allow_html=True,
)
# Spacer
st.markdown("---")
# Optimizer Configuration
st.write("**Optimizer Configuration**")
optimizer = st.selectbox(
"Optimizer",
["SGD", "Adam", "Adamax", "AdamW", "NAdam", "RAdam", "RMSProp", "auto"],
index=7,
)
st.markdown(
"<div style='text-align: justify;'>Select the optimizer for training. The optimizer adjusts weights to minimize the loss function. Choices include SGD, Adam, and others, with 'auto' selecting automatically based on the model.</div>",
unsafe_allow_html=True,
)
# Spacer
st.markdown("---")
# AMP Configuration
st.write("**AMP Configuration**")
amp = st.checkbox("Enable AMP", value=True)
st.markdown(
"<div style='text-align: justify;'>Enable Automatic Mixed Precision (AMP) to accelerate training on compatible hardware. AMP uses lower precision to reduce memory usage and speed up computations.</div>",
unsafe_allow_html=True,
)
# Spacer
st.markdown("---")
# Deterministic Mode Configuration
st.write("**Deterministic Mode Configuration**")
deterministic = st.checkbox("Enable Deterministic Mode", value=False)
st.markdown(
"<div style='text-align: justify;'>Activate deterministic mode to ensure reproducible results. This mode might slow down the training but is useful for experimentation and debugging.</div>",
unsafe_allow_html=True,
)
# Spacer
st.markdown("---")
# Rectangular Training Configuration
st.write("**Rectangular Training Configuration**")
rect = st.checkbox("Enable Rectangular Training", value=False)
st.markdown(
"<div style='text-align: justify;'>Enable rectangular training to process batches with minimal padding by reshaping images. This can lead to performance improvements but may affect accuracy.</div>",
unsafe_allow_html=True,
)
# Spacer
st.markdown("---")
# Cosine Learning Rate Scheduler Configuration
st.write("**Cosine Learning Rate Scheduler**")
cos_lr = st.checkbox("Use Cosine LR Scheduler", value=False)
st.markdown(
"<div style='text-align: justify;'>Use a cosine learning rate scheduler to adjust the learning rate following a cosine curve, potentially leading to better convergence during training.</div>",
unsafe_allow_html=True,
)
# Spacer
st.markdown("---")
# Freeze Layer Configuration
st.write("**Freeze Layer Configuration**")
col1_freeze, col2_freeze = st.columns([1, 3])
with col1_freeze:
top_padding_freeze = st.container()
freeze_allow = st.checkbox("Enable Freeze Layers", value=False)
if freeze_allow:
with top_padding_freeze:
utils.top_padding(2)
freeze = col2_freeze.number_input(
"Freeze Layers",
min_value=1,
max_value=1000,
value=10,
placeholder="Enter number of layers",
)
else:
freeze = None
st.markdown(
"<div style='text-align: justify;'>Enable freezing the initial layers of the model during training. Specify the number of layers to freeze or a comma-separated list of specific layer indices. Useful for fine-tuning pre-trained models without modifying early layers.</div>",
unsafe_allow_html=True,
)
# Spacer
st.markdown("---")
# Initial Learning Rate Configuration
st.write("**Initial Learning Rate (lr0)**")
lr0 = st.number_input(
"Initial Learning Rate (lr0)",
min_value=0.00001,
max_value=1.0,
value=0.01,
format="%.5f",
)
st.markdown(
"<div style='text-align: justify;'>Specify the initial learning rate (lr0) for the training process. The initial rate is crucial as it determines the starting step size for weight updates. A well-chosen initial rate helps in achieving a balance between fast convergence and overshooting the optimal solution.</div>",
unsafe_allow_html=True,
)
# Spacer
st.markdown("---")
# Final Learning Rate Configuration
st.write("**Final Learning Rate (lrf)**")
lrf = st.number_input(
"Final Learning Rate (lrf)",
min_value=0.00001,
max_value=1.0,
value=0.01,
format="%.5f",
)
st.markdown(
"<div style='text-align: justify;'>Determine the final learning rate, which is a factor (lrf) of the initial learning rate (lr0). This parameter is used to adjust the learning rate over the course of training, gradually decreasing it to fine-tune model weights and stabilize training as it approaches the minimum of the loss function.</div>",
unsafe_allow_html=True,
)
# Spacer
st.markdown("---")
# Momentum Configuration
st.write("**Momentum Configuration**")
momentum = st.number_input(
"Momentum", min_value=0.0, max_value=1.0, value=0.937, format="%.3f"
)
st.markdown(
"<div style='text-align: justify;'>Set the momentum value for the optimizer. Momentum helps in accelerating the optimizer in the relevant direction and dampens oscillations, facilitating faster convergence.</div>",
unsafe_allow_html=True,
)
# Spacer
st.markdown("---")
# Weight Decay Configuration
st.write("**Weight Decay Configuration**")
weight_decay = st.number_input(
"Weight Decay", min_value=0.0, max_value=0.1, value=0.0005, format="%.5f"
)
st.markdown(
"<div style='text-align: justify;'>Specify the weight decay, a regularization technique that adds a small penalty to the loss function for larger weights. It helps in preventing overfitting by encouraging simpler models.</div>",
unsafe_allow_html=True,
)
# Spacer
st.markdown("---")
# Warmup Epochs Configuration
st.write("**Warmup Epochs Configuration**")
warmup_epochs = st.number_input(
"Warmup Epochs", min_value=0.0, max_value=10.0, value=3.0, step=0.1
)
st.markdown(
"<div style='text-align: justify;'>Define the number of warmup epochs. During warmup, the learning rate gradually increases to its initial value, which helps in stabilizing the training process in its early stages.</div>",
unsafe_allow_html=True,
)
# Spacer
st.markdown("---")
# Warmup Momentum Configuration
st.write("**Warmup Momentum Configuration**")
warmup_momentum = st.number_input(
"Warmup Momentum", min_value=0.0, max_value=1.0, value=0.8, format="%.1f"
)
st.markdown(
"<div style='text-align: justify;'>Configure the momentum during the warmup phase. A lower momentum at the start can help in stabilizing the optimization process before reaching the specified momentum for the remaining epochs.</div>",
unsafe_allow_html=True,
)
# Spacer
st.markdown("---")
# Warmup Bias Learning Rate Configuration
st.write("**Warmup Bias Learning Rate Configuration**")
warmup_bias_lr = st.number_input(
"Warmup Bias Learning Rate",
min_value=0.0,
max_value=1.0,
value=0.1,
format="%.1f",
)
st.markdown(
"<div style='text-align: justify;'>Adjust the bias learning rate during the warmup period. This parameter can be tuned to manage the initial learning rate specifically for the bias parameters in the early training phase.</div>",
unsafe_allow_html=True,
)
# Spacer
st.markdown("---")
# Box Loss Gain Configuration
st.write("**Box Loss Gain Configuration**")
box = st.number_input(
"Box Loss Gain", min_value=0.0, max_value=10.0, value=7.5, step=0.1
)
st.markdown(
"<div style='text-align: justify;'>Configure the gain factor for the box loss. This gain helps in adjusting the importance of the box size and location accuracy in the loss function, affecting how the model prioritizes bounding box precision.</div>",
unsafe_allow_html=True,
)
# Spacer
st.markdown("---")
# Class Loss Gain Configuration
st.write("**Class Loss Gain Configuration**")
cls = st.number_input(
"Class Loss Gain", min_value=0.0, max_value=10.0, value=0.5, step=0.1
)
st.markdown(
"<div style='text-align: justify;'>Set the gain factor for the class loss. This parameter scales the contribution of class prediction accuracy in the total loss, influencing how the model prioritizes correct class identification.</div>",
unsafe_allow_html=True,
)
# Spacer
st.markdown("---")
# DFL Loss Gain Configuration
st.write("**DFL Loss Gain Configuration**")
dfl = st.number_input(
"DFL Loss Gain", min_value=0.0, max_value=10.0, value=1.5, step=0.1
)
st.markdown(
"<div style='text-align: justify;'>Determine the gain factor for the DFL loss. Adjusting this gain influences the model's focus on the Directional Focal Loss component, which is critical for precise object localization and classification.</div>",
unsafe_allow_html=True,
)
# Spacer
st.markdown("---")
# Label Smoothing Configuration
st.write("**Label Smoothing Configuration**")
label_smoothing = st.number_input(
"Label Smoothing (fraction)",
min_value=0.0,
max_value=1.0,
value=0.0,
format="%.1f",
)
st.markdown(
"<div style='text-align: justify;'>Specify the label smoothing value, a technique that introduces softening to the target labels. It promotes model generalization and reduces the impact of noisy labels on the training process.</div>",
unsafe_allow_html=True,
)
# Spacer
st.markdown("---")
# Nominal Batch Size Configuration
st.write("**Nominal Batch Size Configuration**")
nbs = st.number_input(
"Nominal Batch Size", min_value=1, max_value=128, value=64, step=1
)
st.markdown(
"<div style='text-align: justify;'>Set the nominal batch size, which is used for normalizing the loss. This size does not affect the actual batch size but is used to scale the loss to a standard reference batch size.</div>",
unsafe_allow_html=True,
)
# Spacer
st.markdown("---")
# Overlap Mask Configuration
st.write("**Overlap Mask Configuration**")
overlap_mask = st.checkbox("Masks Overlap during Training", value=True)
st.markdown(
"<div style='text-align: justify;'>Choose whether to allow masks to overlap during instance segmentation training. Overlapping can lead to more precise segmentation but may increase complexity.</div>",
unsafe_allow_html=True,
)
# Spacer
st.markdown("---")
# Mask Ratio Configuration
st.write("**Mask Ratio Configuration**")
mask_ratio = st.number_input(
"Mask Downsample Ratio", min_value=1, max_value=10, value=4, step=1
)
st.markdown(
"<div style='text-align: justify;'>Set the downsample ratio for masks in instance segmentation. A higher ratio reduces the mask resolution, which can speed up computations but might decrease segmentation accuracy.</div>",
unsafe_allow_html=True,
)
# Spacer
st.markdown("---")
# Dropout Configuration
st.write("**Dropout Configuration**")
dropout = st.number_input(
"Dropout Regularization",
min_value=0.0,
max_value=1.0,
value=0.0,
format="%.1f",
)
st.markdown(
"<div style='text-align: justify;'>Configure the dropout rate, which randomly disables a proportion of neurons during training. This prevents the model from relying too much on certain features and promotes better generalization.</div>",
unsafe_allow_html=True,
)
# Spacer
st.markdown("---")
# Validation/Test Configuration
st.write("**Validation/Test Configuration**")
val = st.checkbox("Validate/Test during Training", value=True)
st.markdown(
"<div style='text-align: justify;'>Decide whether to perform validation and testing during the training process. Regular validation helps monitor model performance and adjust training accordingly.</div>",
unsafe_allow_html=True,
)
# Spacer
st.markdown("---")
# Save Plots Configuration
st.write("**Save Plots Configuration**")
plots = st.checkbox("Save Plots and Images during Training", value=True)
st.markdown(
"<div style='text-align: justify;'>Enable saving of plots and images during training. This feature provides visual insights into the training progress and helps in diagnosing model performance across epochs.</div>",
unsafe_allow_html=True,
)
# Padding
utils.top_padding(2)
with st.expander("Validation Configuration"):
# User Instruction for Default Values
st.markdown(
"""
<div style='text-align: justify;'>
<b>User Instructions:</b> If you are unsure about the specific values to use for validation parameters, it is
recommended to stick with the default values provided. These defaults are carefully chosen to provide a good balance
between performance and resource utilization for most scenarios. You can always come back and tweak these settings
once you have more experience or specific requirements for your model validation.
</div>
""",
unsafe_allow_html=True,
)
# Padding
utils.top_padding(2)
# Validation Configuration
st.markdown("### Validation Configuration")
# Object Confidence Threshold
st.write("**Object Confidence Threshold**")
conf = st.number_input(
"Confidence Threshold",
min_value=0.0,
max_value=1.0,
value=0.001,
format="%.3f",
)
st.markdown(
"<div style='text-align: justify;'>Set the confidence threshold for object detection. This threshold filters out detections with lower confidence, reducing false positives and focusing on more likely object detections.</div>",
unsafe_allow_html=True,
)
# Spacer
st.markdown("---")
# Intersection Over Union (IoU) Threshold
st.write("**IoU Threshold for NMS**")
iou = st.number_input(
"IoU Threshold", min_value=0.0, max_value=1.0, value=0.6, format="%.1f"
)
st.markdown(
"<div style='text-align: justify;'>Define the IoU threshold for Non-Maximum Suppression. NMS is used to refine the bounding boxes by eliminating redundancies and retaining the most probable ones.</div>",
unsafe_allow_html=True,
)
# Spacer
st.markdown("---")
# Maximum Number of Detections
st.write("**Maximum Number of Detections**")
max_det = st.number_input(
"Max Detections", min_value=1, max_value=1000, value=300, step=1
)
st.markdown(
"<div style='text-align: justify;'>Limit the maximum number of detections per image. This setting is crucial for controlling the computational load and focusing the model on the most confident and relevant detections.</div>",
unsafe_allow_html=True,
)
# Spacer
st.markdown("---")
# Use Half Precision
st.write("**Use Half Precision (FP16)**")
half = st.checkbox("Enable Half Precision", value=True)
st.markdown(
"<div style='text-align: justify;'>Enable half precision (FP16) training for enhanced performance on compatible GPUs. It reduces memory requirements and accelerates computation, beneficial for larger models and datasets.</div>",
unsafe_allow_html=True,
)
# Padding
utils.top_padding(2)
with st.expander("Export Configuration"):
# User Instruction for Default Values
st.markdown(
"""
<div style='text-align: justify;'>
<b>User Instructions:</b> If you are unsure about the specific values to use for export parameters, it is
recommended to stick with the default values provided. These defaults are carefully chosen to provide a good balance
between performance and resource utilization for most scenarios. You can always come back and tweak these settings
once you have more experience or specific requirements for your model export.
</div>
""",
unsafe_allow_html=True,
)
# Padding
utils.top_padding(2)
# Validation Configuration
st.markdown("### Export Configuration")
# Select Export Format
st.write("**Export Format**")
export_format = st.selectbox(
"Select Export Format",
[
"Only PyTorch",
"TorchScript",
"ONNX",
"OpenVINO",
"TensorRT",
"CoreML",
"TF SavedModel",
"TF GraphDef",
"TF Lite",
"TF Edge TPU",
"TF.js",
"PaddlePaddle",
"ncnn",
],
)
# Dynamically generate description
if export_format == "Only PyTorch":
st.markdown(
"""
<div style='text-align: justify;'>
You have selected <b>PyTorch</b> as the export format.
This will export the model in the standard PyTorch <code>.pt</code> format.
There are no additional format-specific parameters to consider for this selection.
The exported model will be the same as selected during training.
</div>
""",
unsafe_allow_html=True,
)
else:
format_info = utils.export_formats[export_format]
# Handling additional arguments
if len(format_info["arguments"]) > 0:
additional_arguments = ", ".join(format_info["arguments"])
arguments_info = f"Consider the following arguments for the <b>{export_format}</b> format: {additional_arguments}."
else:
arguments_info = (
"No additional parameters need to be considered for this format."
)
st.markdown(
f"""
<div style='text-align: justify;'>
You have selected <b>{export_format}</b> as the export format. Along with the PyTorch model,
this selection will also export the model in the <b>{export_format}</b> format. The image size of
the exported model will be the same as selected during training. {arguments_info}
</div>
""",
unsafe_allow_html=True,
)
# Spacer
st.markdown("---")
# Use Keras for TF SavedModel export
st.write("**Use Keras for TF SavedModel Export**")
keras = st.checkbox("Enable Keras", value=False)
st.markdown(
"<div style='text-align: justify;'>Enabling Keras optimizes the TensorFlow SavedModel export for compatibility with the Keras API, making it easier to work with in Keras-centric workflows.</div>",
unsafe_allow_html=True,
)
# Spacer
st.markdown("---")
# Optimize for mobile (TorchScript)
st.write("**Optimize TorchScript for Mobile**")
optimize = st.checkbox("Enable Optimization", value=False)
st.markdown(
"<div style='text-align: justify;'>Optimizing for mobile reduces the model size and computational needs, enhancing performance on mobile devices with limited resources.</div>",
unsafe_allow_html=True,
)
# Spacer
st.markdown("---")
# FP16 quantization
st.write("**FP16 Quantization**")
half = st.checkbox("Enable FP16 Quantization", value=False)
st.markdown(
"<div style='text-align: justify;'>FP16 quantization reduces model size and speeds up inference, especially on GPUs with Tensor Cores, while maintaining model accuracy.</div>",
unsafe_allow_html=True,
)
# Spacer
st.markdown("---")
# INT8 quantization
st.write("**INT8 Quantization**")
int8 = st.checkbox("Enable INT8 Quantization", value=False)
st.markdown(
"<div style='text-align: justify;'>INT8 quantization further reduces model size and inference time, ideal for edge devices, at the cost of a slight decrease in accuracy.</div>",
unsafe_allow_html=True,
)
# Spacer
st.markdown("---")
# Dynamic axes for ONNX/TensorRT
st.write("**Dynamic Axes for ONNX/TensorRT**")
dynamic = st.checkbox("Enable Dynamic Axes", value=False)
st.markdown(
"<div style='text-align: justify;'>Dynamic axes allow the ONNX/TensorRT models to handle variable input sizes, increasing the model's flexibility in deployment.</div>",
unsafe_allow_html=True,
)
# Spacer
st.markdown("---")
# Simplify model for ONNX/TensorRT
st.write("**Simplify Model for ONNX/TensorRT**")
simplify = st.checkbox("Enable Model Simplification", value=False)
st.markdown(
"<div style='text-align: justify;'>Simplification optimizes the ONNX/TensorRT models by removing redundant operations, improving efficiency without impacting accuracy.</div>",
unsafe_allow_html=True,
)
# Spacer
st.markdown("---")
# ONNX Opset Version Configuration
st.write("**ONNX Opset Version Configuration**")
col1_opset, col2_opset = st.columns([1, 3])
with col1_opset:
top_padding_opset = st.container()
opset_allow = st.checkbox("Specify Opset Version", value=False)
if opset_allow:
with top_padding_opset:
utils.top_padding(2)
# Create a range of opset versions for the dropdown
opset_versions = list(range(1, onnx_opset_version() + 1))
with col2_opset:
opset = st.selectbox(
"Select Opset Version",
opset_versions,
index=len(opset_versions) - 1,
)
else:
opset = None
st.markdown(
"<div style='text-align: justify;'>Select the ONNX opset version for the export. "
"Specifying an opset version can ensure compatibility with specific ONNX versions. "
"The latest version is recommended to ensure the most up-to-date features and optimizations. "
"If unsure, leave the checkbox unchecked to use the default opset version.</div>",
unsafe_allow_html=True,
)
# Spacer
st.markdown("---")
# TensorRT workspace size
st.write("**TensorRT Workspace Size (GB)**")
workspace = st.number_input(
"Workspace Size", min_value=1, max_value=32, value=4, step=1
)
st.markdown(
"<div style='text-align: justify;'>Set the TensorRT workspace size in GB. A larger workspace can lead to more optimized models but requires more memory.</div>",
unsafe_allow_html=True,
)
# Spacer
st.markdown("---")
# Add NMS for CoreML
st.write("**Add NMS for CoreML**")
nms = st.checkbox("Enable NMS", value=False)
st.markdown(
"<div style='text-align: justify;'>Enabling NMS (Non-Maximum Suppression) for CoreML models helps in reducing overlapping bounding boxes and improves the clarity of object detection results.</div>",
unsafe_allow_html=True,
)
# Padding
utils.top_padding(2)
if selected_training == "Object Detection":
model_path = os.path.join(
get_path("models"), selected_model.lower() + ".pt"
)
task = "detect"
elif selected_training == "Instance Segmentation":
model_path = os.path.join(
get_path("models"), selected_model.lower() + "-seg.pt"
)
task = "segment"
export_settings = {
"format": None if export_format == "Only PyTorch" else export_format,
"keras": keras,
"optimize": optimize,
"half": half,
"int8": int8,
"dynamic": dynamic,
"simplify": simplify,
"opset": opset,
"workspace": workspace,
"nms": nms,
}
return {
"model_path": model_path,
"task": task,
"model": selected_model,
"time": time,
"epochs": epochs,
"patience": patience,
"batch": batch,
"imgsz": imgsz,
"cache": cache,
"optimizer": optimizer,
"amp": amp,
"deterministic": deterministic,
"rect": rect,
"cos_lr": cos_lr,
"freeze": freeze,
"lr0": lr0,
"lrf": lrf,
"momentum": momentum,
"weight_decay": weight_decay,
"warmup_epochs": warmup_epochs,
"warmup_momentum": warmup_momentum,
"warmup_bias_lr": warmup_bias_lr,
"box": box,
"cls": cls,
"dfl": dfl,
"label_smoothing": label_smoothing,
"nbs": nbs,
"overlap_mask": overlap_mask,
"mask_ratio": mask_ratio,
"dropout": dropout,
"val": val,
"plots": plots,
"conf": conf,
"iou": iou,
"max_det": max_det,
"half": half,
"export_settings": export_settings,
}
# Function to generate python code for model training
def generate_python_code_model_training(training_configuration):
# Copy the original configuration and update with additional parameters
training_configuration_code = training_configuration.copy()
training_configuration_code["data"] = r".\config.yaml" # Path to config file
training_configuration_code["save_dir"] = r".\output\train" # Output directory
training_configuration_code["pretrained"] = True # Use a pretrained model
training_configuration_code["save"] = True # Save the trained model
training_configuration_code["save_period"] = -1 # Save period configuration
training_configuration_code["augment"] = False # Augmentation setting
training_configuration_code["seed"] = 0 # Seed for reproducibility
training_configuration_code["verbose"] = True # Verbose output
training_configuration_code["single_cls"] = False # Single class setting
training_configuration_code["resume"] = False # Resume training setting
training_configuration_code["exist_ok"] = True # Overwrite existing files
training_configuration_code["project"] = r".\output" # Project directory
training_configuration_code["name"] = "train" # Project name
# Extract the model name from the model path
model_name = training_configuration_code["model_path"].split("\\")[-1]
# Start with necessary library imports and model initialization
code_str = "# Importing necessary libraries\n"
code_str += "from ultralytics import YOLO\n\n"
# Initialize the YOLO model
code_str += f"# Initialize the YOLO model '{model_name}'\n"
code_str += f"model = YOLO('{model_name}')\n"
# Add the model training code
code_str += "\n# Start the training process\n"
code_str += "model.train(\n"
for key, value in training_configuration_code.items():
if key not in [
"model_path",
"model",
"export_settings",
]: # Exclude specific keys
code_str += f" {key}={value},\n"
code_str = code_str.rstrip(",\n") + "\n)\n"
# Add model export code
code_str += "\n# Model export process\n"
code_str += "model.export(\n"
for key, value in training_configuration_code["export_settings"].items():
if key == "format" and value is None:
continue # Skip format if it's None
code_str += f" {key}={value},\n"
code_str = code_str.rstrip(",\n") + "\n)\n"
return code_str
# Function to overwrites a Python file with new code
def overwrite_python_file(code_str, file_path):
# Open the file in write mode, which automatically deletes old content
with open(file_path, "w") as file:
file.write(code_str)
# Function to generate a downloadable file
def display_code_and_download_button(generated_code):
# Display the generated code in Streamlit with description and download button in columns
with st.expander("Plug and Play Code"):
col1, col2 = st.columns([7, 3])
with col1:
st.markdown(
"""
### Description of the Code Pipeline
"""
)
st.markdown(
"""
<div style='text-align: justify;'>
This Python script is configured for training a YOLO model. It includes necessary configurations and parameters for a custom YOLO model training session.
**To use this script:**
- Ensure you have the necessary dependencies installed.
- Place your image and label files in the `'datasets/train'`, `'datasets/val'`, and `'datasets/test'` folders respectively.
- The `'config.yaml'` file and the training script are set up based on your provided configurations.
### Python Code
</div>
""",
unsafe_allow_html=True,
)
# Display python code
st.code(generated_code, language="python")
# Determine the main directory path
main_directory_path = os.path.dirname(
os.path.dirname(os.path.abspath(__file__))
)
# Overwrites a Python file with new code
overwrite_python_file(
generated_code,
os.path.join(
main_directory_path,
"model_data",
"model_training_code_pipline",
"model_training.py",
),
)
# Determine the main directory path
main_directory_path = os.path.dirname(
os.path.dirname(os.path.abspath(__file__))
)
# Prepare a ZIP file of the training output folder in memory for download
zip_bytes_io = zip_folder_to_bytesio(
os.path.join(
main_directory_path, "model_data", "model_training_code_pipline"
)
)
with col2:
# Create a button for downloading the training pipeline
st.download_button(
label="Download Training Pipeline",
data=zip_bytes_io,
file_name="model_training_code.zip",
mime="application/zip",
use_container_width=True,
)
# Function to generates a YOLO model training code snippet and displays it with a download button
def generate_and_display_yolo_training_code(class_labels, training_configuration):
# Determine the main directory path
main_directory_path = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
# Construct the path to the config file directory
config_file_path = os.path.join(
main_directory_path, "model_data", "model_training_code_pipline"
)
# Define the path to the dataset directory
dataset_directory_path = "./datasets"
# Create YOLO config file using provided class labels and dataset directory
create_yolo_config_file(config_file_path, class_labels, dataset_directory_path)
# Generate the Python code for YOLO model training
generated_code = generate_python_code_model_training(training_configuration)
# Display the generated code and a download button
display_code_and_download_button(generated_code)
# Function to create a yolo config file
def create_yolo_config_file(
config_file_path, class_labels, dataset_directory_path=None
):
if dataset_directory_path is None:
dataset_directory_path = os.path.join(config_file_path, "datasets")
# Number of classes
num_classes = len(class_labels)
# Create the configuration content
config_content = f"""path: {dataset_directory_path} # Path to the dataset directory
train: train # Path to the training set directory
val: val # Path to the validation set directory
test: test # Path to the testing set directory
nc: {num_classes} # Number of classes
names: {class_labels} # List of class names
"""
# Write the configuration to a file
with open(os.path.join(config_file_path, "config.yaml"), "w") as file:
file.write(config_content)
# Function to delete and recreate a folder
def delete_and_recreate_folder(folder_path):
try:
# Use shutil.rmtree to delete the folder and its contents
shutil.rmtree(folder_path)
# Recreate the folder at the same location
os.makedirs(folder_path)
except Exception as e:
print(f"Error deleting or recreating folder {folder_path}: {e}")
# Function to read csv and get values
def read_csv_and_get_values(csv_file_path):
# Read the CSV file into a pandas DataFrame
df = pd.read_csv(csv_file_path)
# Initialize an empty dictionary to store the results
result_dict = {}
# Iterate through the columns of the DataFrame
for column in df.columns:
# Remove leading and trailing spaces from the column name
clean_column_name = column.strip()
# Get the values in the column
column_values = df[column].astype(float)
# Add the cleaned column name and values to the result dictionary
result_dict[clean_column_name] = np.array(column_values)
return result_dict
# Global variables
plot_container = None
val_dataframe_container = None
progress_bar = None
progress_text = None
# Function to define a custom callback function for on_pretrain_routine_start
def on_pretrain_routine_start(trainer):
global progress_text, progress_bar
progress_bar = st.empty()
progress_text = st.empty()
progress_text.info(
"Loading selected model...",
icon="β
",
)
# Function to define a custom callback function for on_train_start
def on_train_start(trainer):
global progress_bar, progress_text
progress_bar = st.progress(0)
progress_text.info(
"Training Started...",
icon="β
",
)
# Function to display metrics plot
st.cache_resource(show_spinner=False)
def display_metrics_plot(output_data):
global plot_container
# Extract data for each metric
epoch_history = output_data.get("epoch")
# Extract loss histories
train_box_loss_history = output_data.get("train/box_loss")
train_cls_loss_history = output_data.get("train/cls_loss")
train_dfl_loss_history = output_data.get("train/dfl_loss")
train_seg_loss_history = output_data.get("train/seg_loss")
val_box_loss_history = output_data.get("val/box_loss")
val_cls_loss_history = output_data.get("val/cls_loss")
val_dfl_loss_history = output_data.get("val/dfl_loss")
val_seg_loss_history = output_data.get("val/seg_loss")
if train_seg_loss_history is None:
train_seg_loss_history = epoch_history * 0
val_seg_loss_history = epoch_history * 0
# Extract precision, recall, and mAP histories for B and M box/mask
precision_B_history = output_data.get("metrics/precision(B)")
recall_B_history = output_data.get("metrics/recall(B)")
mAP50_B_history = output_data.get("metrics/mAP50(B)")
mAP50_95_B_history = output_data.get("metrics/mAP50-95(B)")
precision_M_history = output_data.get("metrics/precision(M)")
recall_M_history = output_data.get("metrics/recall(M)")
mAP50_M_history = output_data.get("metrics/mAP50(M)")
mAP50_95_M_history = output_data.get("metrics/mAP50-95(M)")
# Check for 'None' data and adjust the number of rows in the grid
num_rows = 4
subplot_titles = [
"Precision B",
"Recall B",
"mAP50 B",
"mAP50-95 B",
"Precision R",
"Recall R",
"mAP50 R",
"mAP50-95 R",
"Train Box Loss",
"Train Class Loss",
"Train DFL Loss",
"Train Seg Loss",
"Val Box Loss",
"Val Class Loss",
"Val DFL Loss",
"Val Seg Loss",
]
if precision_M_history is None:
num_rows = 3
subplot_titles = subplot_titles[0:4] + subplot_titles[8:]
# Create a subplot grid
fig = make_subplots(
rows=num_rows,
cols=4,
subplot_titles=subplot_titles,
vertical_spacing=0.05,
)
# Initialize row number
row_number = 1
# Add precision, recall, mAP plots for B and R box/mask
fig.add_trace(
go.Scatter(
x=epoch_history, y=precision_B_history, mode="lines", name="Precision B"
),
row=row_number,
col=1,
)
fig.add_trace(
go.Scatter(x=epoch_history, y=recall_B_history, mode="lines", name="Recall B"),
row=row_number,
col=2,
)
fig.add_trace(
go.Scatter(x=epoch_history, y=mAP50_B_history, mode="lines", name="mAP50 B"),
row=row_number,
col=3,
)
fig.add_trace(
go.Scatter(
x=epoch_history, y=mAP50_95_B_history, mode="lines", name="mAP50-95 B"
),
row=row_number,
col=4,
)
if precision_M_history is not None:
# Increment row number
row_number += 1
fig.add_trace(
go.Scatter(
x=epoch_history, y=precision_M_history, mode="lines", name="Precision R"
),
row=row_number,
col=1,
)
fig.add_trace(
go.Scatter(
x=epoch_history, y=recall_M_history, mode="lines", name="Recall R"
),
row=row_number,
col=2,
)
fig.add_trace(
go.Scatter(
x=epoch_history, y=mAP50_M_history, mode="lines", name="mAP50 R"
),
row=row_number,
col=3,
)
fig.add_trace(
go.Scatter(
x=epoch_history, y=mAP50_95_M_history, mode="lines", name="mAP50-95 R"
),
row=row_number,
col=4,
)
# Increment row number
row_number += 1
# Add loss plots
fig.add_trace(
go.Scatter(
x=epoch_history,
y=train_box_loss_history,
mode="lines",
name="Train Box Loss",
),
row=row_number,
col=1,
)
fig.add_trace(
go.Scatter(
x=epoch_history,
y=train_cls_loss_history,
mode="lines",
name="Train Class Loss",
),
row=row_number,
col=2,
)
fig.add_trace(
go.Scatter(
x=epoch_history,
y=train_dfl_loss_history,
mode="lines",
name="Train DFL Loss",
),
row=row_number,
col=3,
)
fig.add_trace(
go.Scatter(
x=epoch_history,
y=train_seg_loss_history,
mode="lines",
name="Train Seg Loss",
),
row=row_number,
col=4,
)
# Increment row number
row_number += 1
fig.add_trace(
go.Scatter(
x=epoch_history, y=val_box_loss_history, mode="lines", name="Val Box Loss"
),
row=row_number,
col=1,
)
fig.add_trace(
go.Scatter(
x=epoch_history, y=val_cls_loss_history, mode="lines", name="Val Class Loss"
),
row=row_number,
col=2,
)
fig.add_trace(
go.Scatter(
x=epoch_history, y=val_dfl_loss_history, mode="lines", name="Val DFL Loss"
),
row=row_number,
col=3,
)
fig.add_trace(
go.Scatter(
x=epoch_history,
y=val_seg_loss_history,
mode="lines",
name="Val Seg Loss",
),
row=row_number,
col=4,
)
# Check if the plot container is already initialized
if plot_container is None:
plot_container = st.empty()
# Update layout
fig.update_layout(
height=1200,
width=1600,
title_text="Metrics",
legend=dict(orientation="h", yanchor="bottom", xanchor="left"),
)
# Display the updated plot in the same container
plot_container.plotly_chart(fig, use_container_width=True)
# Function to define a custom callback function for on_fit_epoch_end
def on_fit_epoch_end(trainer):
current_epoch = int(trainer.epoch)
total_epochs = int(trainer.epochs)
# Define the path to the output CSV
output_csv_path = os.path.join(get_path("output"), "train", "results.csv")
# Read the CSV data
st.session_state["plot_data"] = read_csv_and_get_values(output_csv_path)
# Call a function to update the plot using this data
display_metrics_plot(st.session_state["plot_data"])
# Update progress bar and text
progress_bar.progress((current_epoch + 1) / total_epochs)
progress_text.write(f"Epoch {(current_epoch + 1)}/{total_epochs}")
# Function to define a custom callback function for on_train_end
def on_train_end(trainer):
global progress_bar, progress_text
progress_bar.empty()
progress_text.info(
"Best and last model save completed successfully.",
icon="β
",
)
# Function to add various callbacks to the YOLO model for different stages of the training process
def callback_add(model):
# Add a callback to be triggered at the start of the pre-training routine
model.add_callback("on_pretrain_routine_start", on_pretrain_routine_start)
# Add a callback to be triggered at the start of the training
model.add_callback("on_train_start", on_train_start)
# Add a callback to be triggered at the end of each training epoch
model.add_callback("on_fit_epoch_end", on_fit_epoch_end)
# Add a callback to be triggered at the end of the training process
model.add_callback("on_train_end", on_train_end)
# Function to zip a folder and all its subfolders and return a BytesIO object
def zip_folder_to_bytesio(folder_path):
bytes_io = io.BytesIO()
with zipfile.ZipFile(bytes_io, "w", zipfile.ZIP_DEFLATED) as zipf:
folder_path_abs = os.path.abspath(folder_path)
for root, dirs, files in os.walk(folder_path):
# Calculate the relative path from the folder_path
folder_rel_path = os.path.relpath(root, folder_path_abs)
# If the directory is empty, add the directory itself
if not dirs and not files:
# ZIP format requires a trailing slash for empty directories
zip_dir_path = f"{folder_rel_path}/" if folder_rel_path != "." else ""
zipf.write(root, zip_dir_path)
for file in files:
file_path = os.path.join(root, file)
# Construct the path within the zip file
zip_file_path = (
os.path.join(folder_rel_path, file)
if folder_rel_path != "."
else file
)
zipf.write(file_path, zip_file_path)
bytes_io.seek(0) # Go to the start of the BytesIO buffer
return bytes_io
# Function to display Metrics Table
st.cache_resource(show_spinner=False)
def display_val_dataframe(val_dataframe):
global val_dataframe_container
# Check if the dataframe container is already initialized
if val_dataframe_container is None:
val_dataframe_container = st.container()
# Display the updated dataframe in the same container
with val_dataframe_container:
# Display the message to indicate that the metrics table is ready
st.markdown("**Metrics Table**", unsafe_allow_html=True)
# Display the DataFrame
st.dataframe(val_dataframe)
# Function to display the DataFrame
def val_dataframe(model):
# Placeholder for the initial message
message = st.empty()
message.markdown("**Generating Metrics Table...**", unsafe_allow_html=True)
# Extract the metrics from the model
metrics = model.val()
# Extract the class indices and names
class_index = metrics.ap_class_index
class_names = metrics.names
# Extract precision, recall, and mAP values for the box (B) metrics
precision_B_values = metrics.box.p
recall_B_values = metrics.box.r
mAP50_95_B_values = [metrics.box.maps[i] for i in class_index]
# Check if segmentation (mask) metrics exist
try:
metrics_mask = metrics.seg
except:
metrics_mask = False
if metrics_mask:
precision_M_values = metrics_mask.p
recall_M_values = metrics_mask.r
mAP50_95_M_values = [metrics_mask.maps[i] for i in class_index]
# Extract aggregated metrics from the results dictionary
results_dict = metrics.results_dict
# Initialize lists for overall precision, recall, and mAP for box (B)
precision_B = [results_dict.get("metrics/precision(B)")]
recall_B = [results_dict.get("metrics/recall(B)")]
mAP50_95_B = [results_dict.get("metrics/mAP50-95(B)")]
# Initialize lists for overall precision, recall, and mAP for mask (M) if available
precision_M = [results_dict.get("metrics/precision(M)")] if metrics_mask else None
recall_M = [results_dict.get("metrics/recall(M)")] if metrics_mask else None
mAP50_95_M = [results_dict.get("metrics/mAP50-95(M)")] if metrics_mask else None
# Create a list of class names starting with "All" for the overall metrics
name_list = ["All"] + [str(class_names[i]) for i in class_index]
# Extend the metrics lists with values for each class
precision_B.extend(precision_B_values)
recall_B.extend(recall_B_values)
mAP50_95_B.extend(mAP50_95_B_values)
# If mask metrics are available, extend their lists with values for each class
if metrics_mask:
precision_M.extend(precision_M_values)
recall_M.extend(recall_M_values)
mAP50_95_M.extend(mAP50_95_M_values)
# Create a DataFrame with the computed metrics
if metrics_mask:
st.session_state["val_dataframe"] = pd.DataFrame(
{
"Class Name": name_list,
"Precision (B)": precision_B,
"Recall (B)": recall_B,
"mAP50-95 (B)": mAP50_95_B,
"Precision (M)": precision_M,
"Recall (M)": recall_M,
"mAP50-95 (M)": mAP50_95_M,
}
)
else:
st.session_state["val_dataframe"] = pd.DataFrame(
{
"Class Name": name_list,
"Precision (B)": precision_B,
"Recall (B)": recall_B,
"mAP50-95 (B)": mAP50_95_B,
}
)
# Clear the initial message
message.empty()
# Update the message to indicate that the metrics table is ready and Display the DataFrame
display_val_dataframe(st.session_state["val_dataframe"])
# Function to train the YOLO model
def train_yolo_model(training_configuration):
# Clear and recreate the output folder to ensure a fresh start
delete_and_recreate_folder(get_path("output"))
# Initialize the YOLO model with the specified path from the training configuration
model = YOLO(training_configuration["model_path"])
# Add any callbacks or additional configuration to the model
callback_add(model)
# Train the model with the specified parameters
model.train(
task=training_configuration["task"],
data=os.path.join(get_path("config"), "config.yaml"),
epochs=training_configuration["epochs"],
time=training_configuration["time"],
patience=training_configuration["patience"],
batch=training_configuration["batch"],
imgsz=training_configuration["imgsz"],
save=True,
save_period=-1,
cache=training_configuration["cache"],
pretrained=True,
optimizer=training_configuration["optimizer"],
verbose=True,
seed=0,
deterministic=training_configuration["deterministic"],
single_cls=False,
rect=training_configuration["rect"],
cos_lr=training_configuration["cos_lr"],
resume=False,
amp=training_configuration["amp"],
fraction=1.0,
freeze=training_configuration["freeze"],
lr0=training_configuration["lr0"],
lrf=training_configuration["lrf"],
momentum=training_configuration["momentum"],
weight_decay=training_configuration["weight_decay"],
warmup_epochs=training_configuration["warmup_epochs"],
warmup_momentum=training_configuration["warmup_momentum"],
warmup_bias_lr=training_configuration["warmup_bias_lr"],
box=training_configuration["box"],
cls=training_configuration["cls"],
dfl=training_configuration["dfl"],
label_smoothing=training_configuration["label_smoothing"],
nbs=training_configuration["nbs"],
overlap_mask=training_configuration["overlap_mask"],
mask_ratio=training_configuration["mask_ratio"],
dropout=training_configuration["dropout"],
val=training_configuration["val"],
plots=training_configuration["plots"],
save_dir=os.path.join(get_path("output"), "train"),
project=get_path("output"),
name="train",
augment=False,
exist_ok=True,
)
return model
# Function to export the model with the given parameters
def export_model_with_parameters(model, export_params):
global progress_text
if export_params["format"] is not None:
# Informing the user that the export process has started
progress_text.info(
"Starting the export process with the specified settings.",
icon="β
",
)
# Perform the model export
model.export(
format=export_params["format"],
keras=export_params["keras"],
optimize=export_params["optimize"],
half=export_params["half"],
int8=export_params["int8"],
dynamic=export_params["dynamic"],
simplify=export_params["simplify"],
opset=export_params["opset"],
workspace=export_params["workspace"],
nms=export_params["nms"],
)
# Informing the user that the export process has completed successfully
progress_text.info(
"The model has been successfully saved using the specified export settings.",
icon="β
",
)
# Function to start the YOLO model training process
def start_yolo_training(selected_training, class_labels):
global plot_container, val_dataframe_container
# Retrieve the training configuration based on the user's selection
training_configuration = get_training_validation_export_configuration(
selected_training
)
# Generates a YOLO model training code snippet and displays it with a download button
generate_and_display_yolo_training_code(class_labels, training_configuration)
# Create two columns
col1, col2 = st.columns(2)
# When the "Start Training" button is clicked in the first column
if col1.button("Start Training", use_container_width=True):
plot_container = None
val_dataframe_container = None
with st.spinner("Training in Progress..."):
# Train the YOLO model using the provided configuration
trained_model = train_yolo_model(training_configuration)
# Export the model with the given parameters
export_model_with_parameters(
trained_model, training_configuration["export_settings"]
)
# Display the validation results in a DataFrame after training
val_dataframe(trained_model)
elif "plot_data" in st.session_state and "val_dataframe" in st.session_state:
plot_container = None
val_dataframe_container = None
# Display metrics plot and table if already exist
display_metrics_plot(st.session_state["plot_data"])
display_val_dataframe(st.session_state["val_dataframe"])
# Prepare a ZIP file of the training output folder in memory for download
zip_bytes_io = zip_folder_to_bytesio(os.path.join(get_path("output"), "train"))
# Provide a button in the second column to download the ZIP file
col2.download_button(
label="Download",
data=zip_bytes_io,
file_name="model_training_output.zip",
mime="application/zip",
use_container_width=True,
)
|