Spaces:
Sleeping
Sleeping
Commit
路
95f108c
1
Parent(s):
bb6e368
Update preprocess.py
Browse files- preprocess.py +17 -42
preprocess.py
CHANGED
@@ -1,14 +1,9 @@
|
|
1 |
import sys
|
2 |
-
|
3 |
if sys.version_info[0] < 3 and sys.version_info[1] < 2:
|
4 |
raise Exception("Must be using >= Python 3.2")
|
5 |
-
|
6 |
from os import listdir, path
|
7 |
-
|
8 |
if not path.isfile('data/face_detection/s3fd-619a316812.pth'):
|
9 |
-
raise FileNotFoundError('Save the s3fd model to face_detection/detection/sfd/s3fd.pth
|
10 |
-
before running this script!')
|
11 |
-
|
12 |
import multiprocessing as mp
|
13 |
from concurrent.futures import ThreadPoolExecutor, as_completed
|
14 |
import numpy as np
|
@@ -18,27 +13,21 @@ from tqdm import tqdm
|
|
18 |
from glob import glob
|
19 |
import audio
|
20 |
from hparams import hparams as hp
|
21 |
-
|
22 |
import face_detection
|
23 |
|
24 |
parser = argparse.ArgumentParser()
|
25 |
-
|
26 |
parser.add_argument('--ngpu', help='Number of GPUs across which to run in parallel', default=1, type=int)
|
27 |
parser.add_argument('--batch_size', help='Single GPU Face detection batch size', default=32, type=int)
|
28 |
parser.add_argument("--data_root", help="Root folder of the LRS2 dataset", required=True)
|
29 |
parser.add_argument("--preprocessed_root", help="Root folder of the preprocessed dataset", required=True)
|
30 |
-
|
31 |
args = parser.parse_args()
|
32 |
|
33 |
-
fa = [face_detection.FaceAlignment(face_detection.LandmarksType._2D, flip_input=False,
|
34 |
-
device='cuda:{}'.format(id)) for id in range(args.ngpu)]
|
35 |
|
36 |
template = 'ffmpeg -loglevel panic -y -i {} -strict -2 {}'
|
37 |
-
# template2 = 'ffmpeg -hide_banner -loglevel panic -threads 1 -y -i {} -async 1 -ac 1 -vn -acodec pcm_s16le -ar 16000 {}'
|
38 |
|
39 |
def process_video_file(vfile, args, gpu_id):
|
40 |
video_stream = cv2.VideoCapture(vfile)
|
41 |
-
|
42 |
frames = []
|
43 |
while 1:
|
44 |
still_reading, frame = video_stream.read()
|
@@ -46,40 +35,30 @@ def process_video_file(vfile, args, gpu_id):
|
|
46 |
video_stream.release()
|
47 |
break
|
48 |
frames.append(frame)
|
49 |
-
|
50 |
vidname = os.path.basename(vfile).split('.')[0]
|
51 |
dirname = vfile.split('/')[-2]
|
52 |
-
|
53 |
fulldir = path.join(args.preprocessed_root, dirname, vidname)
|
54 |
os.makedirs(fulldir, exist_ok=True)
|
55 |
-
|
56 |
batches = [frames[i:i + args.batch_size] for i in range(0, len(frames), args.batch_size)]
|
57 |
-
|
58 |
i = -1
|
59 |
for fb in batches:
|
60 |
preds = fa[gpu_id].get_detections_for_batch(np.asarray(fb))
|
61 |
-
|
62 |
for j, f in enumerate(preds):
|
63 |
i += 1
|
64 |
if f is None:
|
65 |
continue
|
66 |
-
|
67 |
x1, y1, x2, y2 = f
|
68 |
cv2.imwrite(path.join(fulldir, '{}.jpg'.format(i)), fb[j][y1:y2, x1:x2])
|
69 |
|
70 |
def process_audio_file(vfile, args):
|
71 |
vidname = os.path.basename(vfile).split('.')[0]
|
72 |
dirname = vfile.split('/')[-2]
|
73 |
-
|
74 |
fulldir = path.join(args.preprocessed_root, dirname, vidname)
|
75 |
os.makedirs(fulldir, exist_ok=True)
|
76 |
-
|
77 |
wavpath = path.join(fulldir, 'audio.wav')
|
78 |
-
|
79 |
command = template.format(vfile, wavpath)
|
80 |
subprocess.call(command, shell=True)
|
81 |
|
82 |
-
|
83 |
def mp_handler(job):
|
84 |
vfile, args, gpu_id = job
|
85 |
try:
|
@@ -88,27 +67,23 @@ def mp_handler(job):
|
|
88 |
exit(0)
|
89 |
except:
|
90 |
traceback.print_exc()
|
91 |
-
|
92 |
def main(args):
|
93 |
print('Started processing for {} with {} GPUs'.format(args.data_root, args.ngpu))
|
|
|
94 |
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
futures = [p.submit(mp_handler, j) for j in jobs]
|
100 |
-
_ = [r.result() for r in tqdm(as_completed(futures), total=len(futures))]
|
101 |
-
|
102 |
-
print('Dumping audios...')
|
103 |
|
104 |
-
|
105 |
-
try:
|
106 |
-
process_audio_file(vfile, args)
|
107 |
-
except KeyboardInterrupt:
|
108 |
-
exit(0)
|
109 |
-
except:
|
110 |
-
traceback.print_exc()
|
111 |
-
continue
|
112 |
-
if __name__ == '__main__':
|
113 |
|
114 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import sys
|
|
|
2 |
if sys.version_info[0] < 3 and sys.version_info[1] < 2:
|
3 |
raise Exception("Must be using >= Python 3.2")
|
|
|
4 |
from os import listdir, path
|
|
|
5 |
if not path.isfile('data/face_detection/s3fd-619a316812.pth'):
|
6 |
+
raise FileNotFoundError('Save the s3fd model to face_detection/detection/sfd/s3fd.pth before running this script!')
|
|
|
|
|
7 |
import multiprocessing as mp
|
8 |
from concurrent.futures import ThreadPoolExecutor, as_completed
|
9 |
import numpy as np
|
|
|
13 |
from glob import glob
|
14 |
import audio
|
15 |
from hparams import hparams as hp
|
|
|
16 |
import face_detection
|
17 |
|
18 |
parser = argparse.ArgumentParser()
|
|
|
19 |
parser.add_argument('--ngpu', help='Number of GPUs across which to run in parallel', default=1, type=int)
|
20 |
parser.add_argument('--batch_size', help='Single GPU Face detection batch size', default=32, type=int)
|
21 |
parser.add_argument("--data_root", help="Root folder of the LRS2 dataset", required=True)
|
22 |
parser.add_argument("--preprocessed_root", help="Root folder of the preprocessed dataset", required=True)
|
|
|
23 |
args = parser.parse_args()
|
24 |
|
25 |
+
fa = [face_detection.FaceAlignment(face_detection.LandmarksType._2D, flip_input=False, device='cpu') for _ in range(args.ngpu)]
|
|
|
26 |
|
27 |
template = 'ffmpeg -loglevel panic -y -i {} -strict -2 {}'
|
|
|
28 |
|
29 |
def process_video_file(vfile, args, gpu_id):
|
30 |
video_stream = cv2.VideoCapture(vfile)
|
|
|
31 |
frames = []
|
32 |
while 1:
|
33 |
still_reading, frame = video_stream.read()
|
|
|
35 |
video_stream.release()
|
36 |
break
|
37 |
frames.append(frame)
|
|
|
38 |
vidname = os.path.basename(vfile).split('.')[0]
|
39 |
dirname = vfile.split('/')[-2]
|
|
|
40 |
fulldir = path.join(args.preprocessed_root, dirname, vidname)
|
41 |
os.makedirs(fulldir, exist_ok=True)
|
|
|
42 |
batches = [frames[i:i + args.batch_size] for i in range(0, len(frames), args.batch_size)]
|
|
|
43 |
i = -1
|
44 |
for fb in batches:
|
45 |
preds = fa[gpu_id].get_detections_for_batch(np.asarray(fb))
|
|
|
46 |
for j, f in enumerate(preds):
|
47 |
i += 1
|
48 |
if f is None:
|
49 |
continue
|
|
|
50 |
x1, y1, x2, y2 = f
|
51 |
cv2.imwrite(path.join(fulldir, '{}.jpg'.format(i)), fb[j][y1:y2, x1:x2])
|
52 |
|
53 |
def process_audio_file(vfile, args):
|
54 |
vidname = os.path.basename(vfile).split('.')[0]
|
55 |
dirname = vfile.split('/')[-2]
|
|
|
56 |
fulldir = path.join(args.preprocessed_root, dirname, vidname)
|
57 |
os.makedirs(fulldir, exist_ok=True)
|
|
|
58 |
wavpath = path.join(fulldir, 'audio.wav')
|
|
|
59 |
command = template.format(vfile, wavpath)
|
60 |
subprocess.call(command, shell=True)
|
61 |
|
|
|
62 |
def mp_handler(job):
|
63 |
vfile, args, gpu_id = job
|
64 |
try:
|
|
|
67 |
exit(0)
|
68 |
except:
|
69 |
traceback.print_exc()
|
70 |
+
|
71 |
def main(args):
|
72 |
print('Started processing for {} with {} GPUs'.format(args.data_root, args.ngpu))
|
73 |
+
filelist = glob(path.join(args.data_root, '*.mp4'))
|
74 |
|
75 |
+
jobs = [(vfile, args, i % args.ngpu) for i, vfile in enumerate(filelist)]
|
76 |
+
p = ThreadPoolExecutor(args.ngpu)
|
77 |
+
futures = [p.submit(mp_handler, j) for j in jobs]
|
78 |
+
_ = [r.result() for r in tqdm(as_completed(futures), total=len(futures))]
|
|
|
|
|
|
|
|
|
79 |
|
80 |
+
print('Dumping audios...')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
81 |
|
82 |
+
for vfile in tqdm(filelist):
|
83 |
+
try:
|
84 |
+
process_audio_file(vfile, args)
|
85 |
+
except KeyboardInterrupt:
|
86 |
+
exit(0)
|
87 |
+
except:
|
88 |
+
traceback.print_exc()
|
89 |
+
continue
|