Spaces:
Sleeping
Sleeping
File size: 17,787 Bytes
82a334c 8fd8293 82a334c 8fd8293 c7bccba 8fd8293 c7bccba 8fd8293 c7bccba 8fd8293 c7bccba 8fd8293 c7bccba 8fd8293 c7bccba 8fd8293 c7bccba 8fd8293 c7bccba 8fd8293 c7bccba 8fd8293 c7bccba 8fd8293 c7bccba 8fd8293 c7bccba 8fd8293 c7bccba 8fd8293 c7bccba 8fd8293 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 |
import streamlit as st
import pandas as pd
import requests
import usaddress
import concurrent.futures
import re
from bs4 import BeautifulSoup
from datetime import datetime
import io
# --- Scraper functions (adapted from your scraper.py) ---
def fetch_detail(cert_number, main_data, headers):
"""
For a given certification number, call the URAC detail API and return a list of rows.
If no site records are returned, a row with blank site fields is returned.
"""
detail_rows = []
url = f"https://accreditnet.urac.org/api/urac/rest/directoryInfo/{cert_number}/certificationEntityInfo/type/Accreditation"
try:
response = requests.get(url, headers=headers)
response.raise_for_status()
detail_data = response.json()
entities = detail_data.get("certificationEntities", [])
if not entities:
row = main_data.copy()
row.update({
"Site Name": None,
"Site Address": None,
"Site Street": None,
"Site City": None,
"Site State": None,
"Site ZipCode": None
})
detail_rows.append(row)
else:
for entity_item in entities:
site_entity = entity_item.get("entity", {})
site_name = site_entity.get("name", None)
# Combine the site address parts.
site_address_parts = []
for key in ['line1', 'line2', 'city', 'stateName', 'zipcode']:
part = site_entity.get(key)
if part:
site_address_parts.append(part)
site_address = ', '.join(site_address_parts)
# Parse the site address using usaddress.
parsed_site = usaddress.parse(site_address)
site_street, site_city, site_state, site_zipcode = '', '', '', ''
for value, label in parsed_site:
if label in ('AddressNumber', 'StreetName', 'StreetNamePostType'):
site_street += f' {value}'
elif label == 'PlaceName':
site_city = value
elif label == 'StateName':
site_state = value
elif label == 'ZipCode':
site_zipcode = value
row = main_data.copy()
row.update({
"Site Name": site_name,
"Site Address": site_address,
"Site Street": site_street.strip(),
"Site City": site_city,
"Site State": site_state,
"Site ZipCode": site_zipcode
})
detail_rows.append(row)
except Exception as e:
st.write(f"Error fetching detail for cert_number {cert_number}: {e}")
return detail_rows
def scrape_urac(progress_bar=None):
"""
Scrape URAC accreditation data:
1. Call the main filter API.
2. Parse organization details.
3. For each organization, call the detail API in parallel to get one row per site address.
Returns a pandas DataFrame.
"""
organizations = []
all_rows = []
headers = {
'accept': '*/*',
'accept-language': 'en-US,en;q=0.9',
'content-type': 'application/json',
'customerid': 'A20B3F2F-3426-41FA-8217-D3870E672D0C',
'origin': 'https://accreditnet.urac.org',
'priority': 'u=1, i',
'referer': 'https://accreditnet.urac.org/directory/',
'sec-ch-ua': '"Chromium";v="134", "Not:A-Brand";v="24", "Brave";v="134"',
'sec-ch-ua-mobile': '?0',
'sec-ch-ua-platform': '"Windows"',
'sec-fetch-dest': 'empty',
'sec-fetch-mode': 'cors',
'sec-fetch-site': 'same-origin',
'sec-gpc': '1',
'user-agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64)'
}
json_data = {
'filter': {
'allParts': [
{
'name': 'completedApplicationDecisionItem.typeDisplay.value',
'comparator': 0,
'valueType': 0,
'textValue': 'Accreditation Program',
'integerValue': None,
'decimalValue': None,
'dateTimeValue': None,
'booleanValue': None,
'innerFilter': None,
},
{
'name': 'certificateType.programName',
'comparator': 0,
'valueType': 0,
'textValue': 'Specialty Pharmacy',
'integerValue': None,
'decimalValue': None,
'dateTimeValue': None,
'booleanValue': None,
'innerFilter': None,
},
],
'anyParts': [],
'notParts': [],
},
'orderBy': 'certificationNumber',
'pageSize': 15,
'limit': 100,
}
try:
response = requests.post(
'https://accreditnet.urac.org/api/urac/rest/directoryInfo/filter',
headers=headers,
json=json_data
)
response.raise_for_status()
data = response.json()
except Exception as e:
st.write("Error processing URAC main API:", e)
return pd.DataFrame()
# Parse organization items.
for item in data.get('items', []):
entity = item.get('entity', {})
org_name = entity.get('name', None)
decision = item.get('completedApplicationDecisionItem', {})
outcome = decision.get('outcomeDisplay', {}).get('default', {}).get('value')
status = outcome if outcome is not None else item.get('effectiveStatusName', None)
srt_date = item.get('issuedDate', None)
exp_date = item.get('expirationDate', None)
program = item.get('certificateType', {}).get('displayName', None)
address_parts = []
for key in ['line1', 'line2', 'city', 'stateName', 'zipcode']:
part = entity.get(key)
if part:
address_parts.append(part)
address = ', '.join(address_parts)
parsed_address = usaddress.parse(address)
street, city, state, zipcode = '', '', '', ''
for value, label in parsed_address:
if label in ('AddressNumber', 'StreetName', 'StreetNamePostType'):
street += f' {value}'
elif label == 'PlaceName':
city = value
elif label == 'StateName':
state = value
elif label == 'ZipCode':
zipcode = value
cert_number = item.get("primaryCertification", {}).get("certificationNumber")
if not cert_number:
cert_number = item.get("certificationNumber")
org_data = {
"Organization Name": org_name,
"Accreditation Status": status,
"Start Date": srt_date,
"Expiration Date": exp_date,
"Program": program,
"Address": address,
"Street": street.strip(),
"City": city,
"State": state,
"ZipCode": zipcode,
"Certification Number": cert_number
}
organizations.append(org_data)
# Fetch detail API calls in parallel and update the progress bar.
with concurrent.futures.ThreadPoolExecutor(max_workers=10) as executor:
future_to_org = {
executor.submit(fetch_detail, org["Certification Number"], org, headers): org
for org in organizations if org["Certification Number"]
}
total = len(future_to_org)
completed = 0
for future in concurrent.futures.as_completed(future_to_org):
try:
detail_rows = future.result()
all_rows.extend(detail_rows)
except Exception as exc:
org = future_to_org[future]
st.write(f"Error fetching detail for {org['Organization Name']}: {exc}")
completed += 1
if progress_bar is not None and total > 0:
progress_bar.progress(min(100, int(100 * completed / total)))
return pd.DataFrame(all_rows)
def _parse_accreditation_blocks(detail_soup):
"""
Parse accreditation blocks (<div class="main_cont_det">) and return a list of dicts.
"""
results = []
blocks = detail_soup.find_all('div', class_='main_cont_det')
for block in blocks:
start_date, expiration_date = '', ''
site_program, site_service = '', ''
for p in block.find_all('p'):
text = p.get_text(strip=True)
if 'Date:' in text:
m = re.search(r'Date:\s*([\d/]+)\s*Through\s*([\d/]+)', text)
if m:
start_date = m.group(1)
expiration_date = m.group(2)
elif 'Program:' in text:
site_program = text.split('Program:')[-1].strip()
elif 'Service:' in text:
site_service = text.split('Service:')[-1].strip()
results.append({
"Start Date": start_date,
"Expiration Date": expiration_date,
"SiteProgram": site_program,
"SiteService": site_service
})
return results
def _extract_original_program(detail_soup):
"""
Extract the original Program value from the detail soup.
"""
program = ''
for p in detail_soup.find_all('p'):
if 'Program:' in p.get_text():
program = p.get_text(strip=True).split('Program:')[-1].strip()
break
return program
def _fetch_detail_for_company(company, base_url, headers, cookies):
"""
For a given company from the ACHC main API, fetch the detail API,
parse the HTML detail, and return one or more rows.
"""
rows = []
company_id = company["company_id"]
detail_payload = f'action=view_provider_details&data_company_id={company_id}'
try:
detail_resp = requests.post(base_url, headers=headers, cookies=cookies, data=detail_payload)
detail_resp.raise_for_status()
detail_json = detail_resp.json()
detail_html = detail_json.get('response_html', '')
detail_soup = BeautifulSoup(detail_html, 'html.parser')
original_program = _extract_original_program(detail_soup)
acc_blocks = _parse_accreditation_blocks(detail_soup)
if not acc_blocks:
rows.append({
"Organization Name": company["org_name"],
"Start Date": '',
"Expiration Date": '',
"Accreditation Status": "N/A",
"Program": original_program,
"SiteProgram": '',
"SiteService": '',
"Address": company["address"],
"Street": company["street"],
"City": company["city"],
"State": company["state"],
"ZipCode": company["zipcode"]
})
else:
for block in acc_blocks:
rows.append({
"Organization Name": company["org_name"],
"Start Date": block["Start Date"],
"Expiration Date": block["Expiration Date"],
"Accreditation Status": "N/A",
"Program": original_program,
"SiteProgram": block["SiteProgram"],
"SiteService": block["SiteService"],
"Address": company["address"],
"Street": company["street"],
"City": company["city"],
"State": company["state"],
"ZipCode": company["zipcode"]
})
except Exception as e:
st.write(f"Error fetching ACHC detail for company ID {company_id}: {e}")
return rows
def scrape_achc(progress_bar=None):
"""
Scrape ACHC data:
1. Call the main API to get HTML.
2. Parse each company’s info.
3. In parallel, call the detail API to get accreditation details.
Returns a pandas DataFrame.
"""
headers = {
'accept': 'application/json, text/javascript, */*; q=0.01',
'accept-language': 'en-US,en;q=0.8',
'content-type': 'application/x-www-form-urlencoded; charset=UTF-8',
'origin': 'https://www.achc.org',
'priority': 'u=1, i',
'referer': 'https://www.achc.org/find-a-provider/',
'sec-ch-ua': '"Chromium";v="134", "Not:A-Brand";v="24", "Brave";v="134"',
'sec-ch-ua-mobile': '?0',
'sec-ch-ua-platform': '"Windows"',
'sec-fetch-dest': 'empty',
'sec-fetch-mode': 'cors',
'sec-fetch-site': 'same-origin',
'sec-gpc': '1',
'user-agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64)'
}
cookies = {
'SGPBShowingLimitationDomain18418': '{"openingCount":1,"openingPage":""}'
}
base_url = 'https://www.achc.org/wp-admin/admin-ajax.php'
main_payload = 'action=filter_provider_data&provider_id=6&service_id=&country_id=&state_id=&quick_search='
try:
main_resp = requests.post(base_url, headers=headers, cookies=cookies, data=main_payload)
main_resp.raise_for_status()
main_json = main_resp.json()
except Exception as e:
st.write(f"Error fetching ACHC main API: {e}")
return pd.DataFrame({"Organization Name":[]}, columns=['Organization Name'])
main_html = main_json.get('response_html', '')
main_soup = BeautifulSoup(main_html, 'html.parser')
company_items = main_soup.find_all('li')
companies = []
for item in company_items:
list_box = item.find('div', class_='list_cont_box')
if not list_box:
continue
org_tag = list_box.find('b', class_='company_name')
org_name = org_tag.get_text(strip=True) if org_tag else ''
address_parts = [p.get_text(strip=True) for p in list_box.find_all('p')]
address = ' '.join(address_parts)
parsed = usaddress.parse(address)
street, city, state, zipcode = '', '', '', ''
for value, label in parsed:
if label in ('AddressNumber', 'StreetName', 'StreetNamePostType'):
street += f' {value}'
elif label == 'PlaceName':
city = value
elif label == 'StateName':
state = value
elif label == 'ZipCode':
zipcode = value
view_more = item.find('p', class_='view_more_eye')
if not view_more or not view_more.has_attr('data-company-id'):
continue
company_id = view_more['data-company-id']
companies.append({
"company_id": company_id,
"org_name": org_name,
"address": address,
"street": street.strip(),
"city": city,
"state": state,
"zipcode": zipcode
})
detail_rows_all = []
with concurrent.futures.ThreadPoolExecutor(max_workers=10) as executor:
futures = [
executor.submit(_fetch_detail_for_company, comp, base_url, headers, cookies)
for comp in companies
]
total = len(futures)
completed = 0
for future in concurrent.futures.as_completed(futures):
try:
rows = future.result()
detail_rows_all.extend(rows)
except Exception as exc:
st.write(f"Error fetching ACHC detail: {exc}")
completed += 1
if progress_bar is not None and total > 0:
progress_bar.progress(min(100, int(100 * completed / total)))
df = pd.DataFrame(detail_rows_all, columns=[
"Organization Name",
"Start Date",
"Expiration Date",
"Accreditation Status",
"Program",
"SiteProgram",
"SiteService",
"Address",
"Street",
"City",
"State",
"ZipCode"
])
return df
# --- Streamlit UI ---
st.title("Accreditation Data Scraper")
st.write("Click the button below to start scraping and generate an Excel file.")
def run_scraper():
# Scrape URAC data with its own progress bar.
with st.spinner("Scraping URAC data..."):
urac_progress = st.progress(0)
urac_df = scrape_urac(progress_bar=urac_progress)
# Scrape ACHC data with its own progress bar.
with st.spinner("Scraping ACHC data..."):
achc_progress = st.progress(0)
achc_df = scrape_achc(progress_bar=achc_progress)
# Merge data and write to an in-memory Excel file.
with st.spinner("Merging data and generating Excel..."):
merged_df = pd.merge(urac_df, achc_df, on="Organization Name", how="outer",
suffixes=("_URAC", "_ACHC"))
output = io.BytesIO()
with pd.ExcelWriter(output, engine='xlsxwriter') as writer:
if not urac_df.empty:
urac_df.to_excel(writer, sheet_name="URAC", index=False)
if not achc_df.empty:
achc_df.to_excel(writer, sheet_name="ACHC", index=False)
if not urac_df.empty and not achc_df.empty:
merged_df.to_excel(writer, sheet_name="Merged", index=False)
# writer.save()
output.seek(0)
return output
if st.button("Start Scraping"):
excel_data = run_scraper()
st.success("Scraping completed!")
st.download_button(
label="Download Excel File",
data=excel_data,
file_name=f"combined_data_{datetime.now().strftime('%Y%m%d_%H%M%S')}.xlsx",
mime="application/vnd.openxmlformats-officedocument.spreadsheetml.sheet"
)
|