Spaces:
Build error
Build error
Commit
·
ae2743c
1
Parent(s):
ec054fc
Update app.py
Browse files
app.py
CHANGED
@@ -54,17 +54,7 @@ controlnet = ControlNetModel.from_pretrained(
|
|
54 |
pipe = StableDiffusionControlNetPipeline.from_pretrained(
|
55 |
"runwayml/stable-diffusion-v1-5", controlnet=controlnet, safety_checker=None, torch_dtype=torch.float16
|
56 |
)
|
57 |
-
pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config)
|
58 |
|
59 |
-
# This command loads the individual model components on GPU on-demand. So, we don't
|
60 |
-
# need to explicitly call pipe.to("cuda").
|
61 |
-
pipe.enable_model_cpu_offload()
|
62 |
-
|
63 |
-
# xformers
|
64 |
-
pipe.enable_xformers_memory_efficient_attention()
|
65 |
-
|
66 |
-
# Generator seed,
|
67 |
-
generator = torch.manual_seed(0)
|
68 |
|
69 |
def get_pose(image):
|
70 |
return pose_model(image)
|
@@ -74,29 +64,21 @@ def get_pose(image):
|
|
74 |
def generate_an_image_from_text(text, text_size_, width, lenght):
|
75 |
# Create a blank image
|
76 |
image = Image.new('RGB', (width, lenght), color = (255, 255, 255))
|
77 |
-
|
78 |
# Create a drawing object
|
79 |
draw = ImageDraw.Draw(image)
|
80 |
-
|
81 |
# font def
|
82 |
font_dir = '/usr/share/fonts/truetype/liberation/'
|
83 |
-
|
84 |
# Get a list of all the font files in the directory
|
85 |
font_files = [os.path.join(font_dir, f) for f in os.listdir(font_dir) if os.path.isfile(os.path.join(font_dir, f))]
|
86 |
-
|
87 |
# Select a random font
|
88 |
font_path = random.choice(font_files)
|
89 |
-
print(font_path)
|
90 |
-
|
91 |
font = ImageFont.truetype(font_path, text_size_)
|
92 |
-
|
93 |
# Get the text size
|
94 |
text_size = draw.textsize(text, font)
|
95 |
-
|
96 |
# Calculate the x and y positions for the text
|
97 |
x = (image.width - text_size[0]) / 2
|
98 |
y = (image.height - text_size[1]) / 2
|
99 |
-
|
100 |
# Draw the text on the image
|
101 |
draw.text((x, y), text, fill=(0, 0, 0), font=font)
|
102 |
return image
|
@@ -115,17 +97,20 @@ def to_Canny(image):
|
|
115 |
return canny_image
|
116 |
|
117 |
def inference(prompt,canny_image,number,seed ):
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
|
|
|
|
|
|
127 |
prompt, num_inference_steps=20, generator=generator, image=image_, num_images_per_prompt=number)
|
128 |
-
|
129 |
|
130 |
def generate_images(image, prompt):
|
131 |
pose = get_pose(image)
|
|
|
54 |
pipe = StableDiffusionControlNetPipeline.from_pretrained(
|
55 |
"runwayml/stable-diffusion-v1-5", controlnet=controlnet, safety_checker=None, torch_dtype=torch.float16
|
56 |
)
|
|
|
57 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
58 |
|
59 |
def get_pose(image):
|
60 |
return pose_model(image)
|
|
|
64 |
def generate_an_image_from_text(text, text_size_, width, lenght):
|
65 |
# Create a blank image
|
66 |
image = Image.new('RGB', (width, lenght), color = (255, 255, 255))
|
|
|
67 |
# Create a drawing object
|
68 |
draw = ImageDraw.Draw(image)
|
|
|
69 |
# font def
|
70 |
font_dir = '/usr/share/fonts/truetype/liberation/'
|
|
|
71 |
# Get a list of all the font files in the directory
|
72 |
font_files = [os.path.join(font_dir, f) for f in os.listdir(font_dir) if os.path.isfile(os.path.join(font_dir, f))]
|
|
|
73 |
# Select a random font
|
74 |
font_path = random.choice(font_files)
|
75 |
+
#print(font_path)
|
|
|
76 |
font = ImageFont.truetype(font_path, text_size_)
|
|
|
77 |
# Get the text size
|
78 |
text_size = draw.textsize(text, font)
|
|
|
79 |
# Calculate the x and y positions for the text
|
80 |
x = (image.width - text_size[0]) / 2
|
81 |
y = (image.height - text_size[1]) / 2
|
|
|
82 |
# Draw the text on the image
|
83 |
draw.text((x, y), text, fill=(0, 0, 0), font=font)
|
84 |
return image
|
|
|
97 |
return canny_image
|
98 |
|
99 |
def inference(prompt,canny_image,number,seed ):
|
100 |
+
|
101 |
+
pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config)
|
102 |
+
# This command loads the individual model components on GPU on-demand. So, we don't
|
103 |
+
# need to explicitly call pipe.to("cuda").
|
104 |
+
pipe.enable_model_cpu_offload()
|
105 |
+
# xformers
|
106 |
+
pipe.enable_xformers_memory_efficient_attention()
|
107 |
+
# Generator seed,
|
108 |
+
generator = torch.manual_seed(seed)
|
109 |
+
image_ = canny_image
|
110 |
+
prompt = prompt
|
111 |
+
out_image = pipe(
|
112 |
prompt, num_inference_steps=20, generator=generator, image=image_, num_images_per_prompt=number)
|
113 |
+
return out_image
|
114 |
|
115 |
def generate_images(image, prompt):
|
116 |
pose = get_pose(image)
|