Spaces:
Sleeping
Sleeping
# Copyright 2023 Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
# Modified by Zheng Yuan and Hongyi Yuan | |
# Adapting the above code-base. | |
import os | |
import copy | |
import logging | |
from dataclasses import dataclass, field | |
from typing import Optional, Dict, Sequence, List | |
import io | |
import torch | |
import transformers | |
from torch.utils.data import Dataset | |
from transformers import Trainer | |
import argparse | |
import json | |
import random;random.seed(42) | |
from peft import get_peft_model, LoraConfig, VeraConfig, BOFTConfig | |
from tqdm import tqdm | |
from functools import partial, reduce | |
import sys | |
sys.path.append("../") | |
from svft.svft_layers import LinearWithSVFT, create_and_replace_modules, get_target_modules_list, replace_svft_with_fused_linear | |
def _make_r_io_base(f, mode: str): | |
if not isinstance(f, io.IOBase): | |
f = open(f, mode=mode) | |
return f | |
def jload(f, mode="r"): | |
"""Load a .json file into a dictionary.""" | |
f = _make_r_io_base(f, mode) | |
jdict = json.load(f) | |
f.close() | |
return jdict | |
IGNORE_INDEX = -100 | |
DEFAULT_PAD_TOKEN = "[PAD]" | |
DEFAULT_EOS_TOKEN = "</s>" | |
DEFAULT_BOS_TOKEN = "<s>" | |
DEFAULT_UNK_TOKEN = "<unk>" | |
PROMPT_DICT = { | |
"prompt_input": ( | |
"Below is an instruction that describes a task, paired with an input that provides further context. " | |
"Write a response that appropriately completes the request.\n\n" | |
"### Instruction:\n{instruction}\n\n### Input:\n{input}\n\n### Response:" | |
), | |
"prompt_no_input": ( | |
"Below is an instruction that describes a task. " | |
"Write a response that appropriately completes the request.\n\n" | |
"### Instruction:\n{instruction}\n\n### Response:" | |
), | |
} | |
#### 28 | |
class ModelArguments: | |
model_name_or_path: Optional[str] = field(default="facebook/opt-125m") | |
class DataArguments: | |
data_path: str = field(default=None, metadata={"help": "Path to the training data."}) | |
class SVFTArguments: | |
adapter_name: str = field(default="svft", metadata={"help": "Adapter name."}) | |
pattern: str = field(default="banded", metadata={"help": "Choose from 'banded', 'random', 'top_k'."}) | |
off_diag: int = field(default=0, metadata={"help": "Number of off-diagonal blocks."}) | |
target_modules: List[str] = field(default_factory=lambda: ["q_proj", "v_proj"]) | |
rank: int = field(default=None, metadata={"help": "Rank of the low-rank decomposition. Only used in truncated-SVFT"}) | |
fill_orthonormal: bool = field(default=False, metadata={"help": "Initialize singular vectors from a random orthonomal bases. Only applicable if less than full-rank."}) | |
class TrainingArguments(transformers.TrainingArguments): | |
cache_dir: Optional[str] = field(default=None) | |
optim: str = field(default="adamw_torch") | |
model_max_length: int = field( | |
default=512, | |
metadata={"help": "Maximum sequence length. Sequences will be right padded (and possibly truncated)."}, | |
) | |
overwrite_output_dir: bool = field(default=True) | |
def safe_save_model_for_hf_trainer(trainer: transformers.Trainer, output_dir: str): | |
"""Collects the state dict and dump to disk.""" | |
state_dict = trainer.model.state_dict() | |
if trainer.args.should_save: | |
cpu_state_dict = {key: value.cpu() for key, value in state_dict.items()} | |
del state_dict | |
trainer._save(output_dir, state_dict=cpu_state_dict) | |
def smart_tokenizer_and_embedding_resize( | |
special_tokens_dict: Dict, | |
tokenizer: transformers.PreTrainedTokenizer, | |
model: transformers.PreTrainedModel): | |
"""Resize tokenizer and embedding. | |
Note: This is the unoptimized version that may make your embedding size not be divisible by 64. | |
""" | |
num_new_tokens = tokenizer.add_special_tokens(special_tokens_dict) | |
model.resize_token_embeddings(len(tokenizer)) | |
if num_new_tokens > 0: | |
input_embeddings = model.get_input_embeddings().weight.data | |
output_embeddings = model.get_output_embeddings().weight.data | |
input_embeddings_avg = input_embeddings[:-num_new_tokens].mean(dim=0, keepdim=True) | |
output_embeddings_avg = output_embeddings[:-num_new_tokens].mean(dim=0, keepdim=True) | |
input_embeddings[-num_new_tokens:] = input_embeddings_avg | |
output_embeddings[-num_new_tokens:] = output_embeddings_avg | |
def _tokenize_fn(strings: Sequence[str], tokenizer: transformers.PreTrainedTokenizer) -> Dict: | |
"""Tokenize a list of strings.""" | |
tokenized_list = [ | |
tokenizer( | |
text, | |
return_tensors="pt", | |
padding="longest", | |
max_length=tokenizer.model_max_length, | |
truncation=True, | |
) | |
for text in strings | |
] | |
input_ids = labels = [tokenized.input_ids[0] for tokenized in tokenized_list] | |
input_ids_lens = labels_lens = [ | |
tokenized.input_ids.ne(tokenizer.pad_token_id).sum().item() for tokenized in tokenized_list | |
] | |
return dict( | |
input_ids=input_ids, | |
labels=labels, | |
input_ids_lens=input_ids_lens, | |
labels_lens=labels_lens, | |
) | |
def preprocess( | |
sources: Sequence[str], | |
targets: Sequence[str], | |
tokenizer: transformers.PreTrainedTokenizer) -> Dict: | |
"""Preprocess the data by tokenizing.""" | |
examples = [s + t for s, t in zip(sources, targets)] | |
examples_tokenized, sources_tokenized = [_tokenize_fn(strings, tokenizer) for strings in (examples, sources)] | |
input_ids = examples_tokenized["input_ids"] | |
labels = copy.deepcopy(input_ids) | |
for label, source_len in zip(labels, sources_tokenized["input_ids_lens"]): | |
label[:source_len] = IGNORE_INDEX | |
return dict(input_ids=input_ids, labels=labels) | |
class SupervisedDataset(Dataset): | |
"""Dataset for supervised fine-tuning.""" | |
def __init__(self, data_args, tokenizer: transformers.PreTrainedTokenizer): | |
super(SupervisedDataset, self).__init__() | |
logging.warning("Loading data...") | |
data_path = data_args.data_path | |
try: | |
data_path = data_path_map[data_path] | |
except: | |
data_path = data_path | |
try: | |
list_data_dict = jload(data_path) | |
except BaseException: | |
with open(data_path, 'r') as f: | |
lines = f.readlines() | |
list_data_dict = [json.loads(line.strip()) for line in lines] | |
list_data_dict = random.sample(list_data_dict, len(list_data_dict)) | |
list_data_dict = list_data_dict[:data_args.data_length] | |
# logging.warning("Formatting inputs...") | |
prompt_input, prompt_no_input = PROMPT_DICT["prompt_input"], PROMPT_DICT["prompt_no_input"] | |
if 'instruction' in list_data_dict[0]: | |
pass | |
else: | |
def get_input(query): | |
if query.find('\n') == -1: | |
return '' | |
return '\n'.join(query.split('\n')[1:]) | |
list_data_dict = [{'instruction':data['query'].split('\n')[0], 'input':get_input(data['query']), 'output':data['response']} for data in list_data_dict] | |
sources = [ | |
prompt_input.format_map(example) if example.get("input", "") != "" else prompt_no_input.format_map(example) | |
for example in list_data_dict | |
] | |
targets = [f"{example['output']}{tokenizer.eos_token}" for example in list_data_dict] | |
self.sources = sources | |
self.targets = targets | |
def __len__(self): | |
return len(self.sources) | |
def naive__getitem__(self, i) -> Dict[str, torch.Tensor]: | |
return dict(input_ids=self.input_ids[i], labels=self.labels[i]) | |
def __getitem__(self, i): | |
return dict(input_ids=self.sources[i], labels=self.targets[i]) | |
class DataCollatorForSupervisedDataset(object): | |
"""Collate examples for supervised fine-tuning.""" | |
tokenizer: transformers.PreTrainedTokenizer | |
def naive__call__(self, instances: Sequence[Dict]) -> Dict[str, torch.Tensor]: | |
input_ids, labels = tuple([instance[key] for instance in instances] for key in ("input_ids", "labels")) | |
input_ids = torch.nn.utils.rnn.pad_sequence( | |
input_ids, batch_first=True, padding_value=self.tokenizer.pad_token_id | |
) | |
labels = torch.nn.utils.rnn.pad_sequence(labels, batch_first=True, padding_value=IGNORE_INDEX) | |
return dict( | |
input_ids=input_ids, | |
labels=labels, | |
attention_mask=input_ids.ne(self.tokenizer.pad_token_id), | |
) | |
def __call__(self, instances: Sequence[Dict]) -> Dict[str, torch.Tensor]: | |
sources = [] | |
targets = [] | |
for instance in instances: | |
source = instance['input_ids'] | |
target = instance['labels'] | |
sources.append(source) | |
targets.append(target) | |
data_dict = preprocess(sources, targets, self.tokenizer) | |
input_ids, labels = data_dict['input_ids'], data_dict['labels'] | |
# input_ids, labels = tuple([instance[key] for instance in instances] for key in ("input_ids", "labels")) | |
input_ids = torch.nn.utils.rnn.pad_sequence( | |
input_ids, batch_first=True, padding_value=self.tokenizer.pad_token_id | |
) | |
labels = torch.nn.utils.rnn.pad_sequence(labels, batch_first=True, padding_value=IGNORE_INDEX) | |
return dict( | |
input_ids=input_ids, | |
labels=labels, | |
attention_mask=input_ids.ne(self.tokenizer.pad_token_id), | |
) | |
def make_supervised_data_module(tokenizer: transformers.PreTrainedTokenizer, data_args) -> Dict: | |
"""Make dataset and collator for supervised fine-tuning.""" | |
train_dataset = SupervisedDataset(tokenizer=tokenizer, data_args=data_args) | |
data_collator = DataCollatorForSupervisedDataset(tokenizer=tokenizer) | |
return dict(train_dataset=train_dataset, eval_dataset=None, data_collator=data_collator) | |
def train(): | |
parser = transformers.HfArgumentParser((ModelArguments, DataArguments, TrainingArguments, SVFTArguments)) | |
model_args, data_args, training_args, svft_args, remaining_args = parser.parse_args_into_dataclasses(return_remaining_strings=True) | |
data_args.data_length = int(remaining_args[1]) | |
model = transformers.AutoModelForCausalLM.from_pretrained( | |
model_args.model_name_or_path, | |
cache_dir=training_args.cache_dir, | |
).to("cuda") | |
tokenizer = transformers.AutoTokenizer.from_pretrained( | |
model_args.model_name_or_path, | |
cache_dir=training_args.cache_dir, | |
model_max_length=training_args.model_max_length, | |
padding_side="right", | |
use_fast=False, | |
) | |
if tokenizer.pad_token is None: | |
smart_tokenizer_and_embedding_resize( | |
special_tokens_dict=dict(pad_token=DEFAULT_PAD_TOKEN), | |
tokenizer=tokenizer, | |
model=model, | |
) | |
if "llama-2" in model_args.model_name_or_path.lower(): | |
tokenizer.add_special_tokens( | |
{ | |
"eos_token": DEFAULT_EOS_TOKEN, | |
"bos_token": DEFAULT_BOS_TOKEN, | |
"unk_token": DEFAULT_UNK_TOKEN, | |
} | |
) | |
data_module = make_supervised_data_module(tokenizer=tokenizer, data_args=data_args) | |
if svft_args.adapter_name == 'boft': | |
config = BOFTConfig( | |
boft_block_size=8, | |
boft_n_butterfly_factor=2, | |
target_modules=["q_proj", "v_proj", "k_proj", "o_proj"], | |
boft_dropout=0.05, | |
bias="boft_only", | |
) | |
elif svft_args.adapter_name == 'lora': | |
config = LoraConfig( | |
r=svft_args.rank, | |
lora_alpha=2*svft_args.rank, | |
use_dora=False, | |
init_lora_weights=True, | |
target_modules=["q_proj", "v_proj", "k_proj", "up_proj", "down_proj"], | |
lora_dropout=0, | |
bias="none", | |
task_type="CAUSAL_LM", | |
) | |
elif svft_args.adapter_name == 'vera': | |
config = VeraConfig( | |
r=svft_args.rank, | |
target_modules=["gate_proj", "up_proj"], | |
) | |
if svft_args.adapter_name != 'svft': | |
model = get_peft_model(model, config) | |
else: | |
# for SVFT turn off gradient requirement for all layers | |
# PEFT library handles this internally | |
for param in model.parameters(): | |
param.requires_grad = False | |
print(f"Target Modules: {svft_args.target_modules}") | |
assign_svft_layer = partial(LinearWithSVFT, | |
off_diag=svft_args.off_diag, | |
pattern=svft_args.pattern, | |
rank=svft_args.rank, | |
fill_orthonormal=svft_args.fill_orthonormal) | |
create_and_replace_modules(model, get_target_modules_list(model, svft_args.target_modules), assign_svft_layer) | |
print(f"Trainable Parameters: {sum(p.numel() for p in model.parameters() if p.requires_grad)}") | |
trainer = Trainer(model=model, tokenizer=tokenizer, args=training_args, **data_module) | |
trainer.train() | |
trainer.save_state() | |
model.generation_config.temperature = 1.0 | |
model.generation_config.top_p = 1.0 | |
if svft_args.adapter_name == 'svft': | |
replace_svft_with_fused_linear(model, get_target_modules_list(model, svft_args.target_modules)) | |
else: | |
model = model.merge_and_unload() | |
for param in model.parameters(): | |
param.data = param.data.contiguous() | |
model.save_pretrained(training_args.output_dir) | |
tokenizer.save_pretrained(training_args.output_dir) | |
if __name__ == "__main__": | |
train() |