sakshi7502's picture
Upload 64 files
6376749 verified
export MODEL_PATH='google/gemma-2b'
export MASTER_ADDR="localhost"
export MASTER_PORT="1231"
export GLOO_SOCKET_IFNAME="lo"
export NCCL_SOCKET_IFNAME="lo"
#SVFT_PLAIN
export SAVE_PATH='./Gemma_2B_metamath40k_svft_plain'
CUDA_VISIBLE_DEVICES=0 python3 -m torch.distributed.launch --master_addr ${MASTER_ADDR} --master_port ${MASTER_PORT} --nproc_per_node=1 --use_env train_math.py \
--model_name_or_path $MODEL_PATH \
--data_path "./data/train/MetaMathQA-40K.json" \
--data_length 10000000 \
--bf16 True \
--output_dir $SAVE_PATH \
--per_device_train_batch_size 4 \
--per_device_eval_batch_size 4 \
--gradient_accumulation_steps 16 \
--evaluation_strategy "no" \
--save_strategy "steps" \
--save_steps 1000 \
--save_total_limit 2 \
--learning_rate 5e-2\
--weight_decay 0. \
--warmup_ratio 0.1 \
--lr_scheduler_type "cosine" \
--logging_steps 1 \
--num_train_epochs 2 \
--pattern "banded" \
--off_diag 0 \
--target_modules q_proj k_proj v_proj up_proj down_proj o_proj gate_proj \
--adapter_name "svft"
#SVFT_Random_d=16
export SAVE_PATH='./Gemma_2B_metamath40k_svft_16diag_random'
CUDA_VISIBLE_DEVICES=0 python3 -m torch.distributed.launch --master_addr ${MASTER_ADDR} --master_port ${MASTER_PORT} --nproc_per_node=1 --use_env train_math.py \
--model_name_or_path $MODEL_PATH \
--data_path "./data/train/MetaMathQA-40K.json" \
--data_length 10000000 \
--bf16 True \
--output_dir $SAVE_PATH \
--per_device_train_batch_size 4 \
--per_device_eval_batch_size 4 \
--gradient_accumulation_steps 16 \
--evaluation_strategy "no" \
--save_strategy "steps" \
--save_steps 1000 \
--save_total_limit 2 \
--learning_rate 5e-2\
--weight_decay 0. \
--warmup_ratio 0.1 \
--lr_scheduler_type "cosine" \
--logging_steps 1 \
--num_train_epochs 2 \
--pattern "random" \
--off_diag 16 \
--target_modules q_proj k_proj v_proj up_proj down_proj o_proj gate_proj \
--adapter_name "svft"
#SVFT_Random_d=16
export SAVE_PATH='./Gemma_2B_metamath40k_svft_16diag_banded'
CUDA_VISIBLE_DEVICES=0 python3 -m torch.distributed.launch --master_addr ${MASTER_ADDR} --master_port ${MASTER_PORT} --nproc_per_node=1 --use_env train_math.py \
--model_name_or_path $MODEL_PATH \
--data_path "./data/train/MetaMathQA-40K.json" \
--data_length 10000000 \
--bf16 True \
--output_dir $SAVE_PATH \
--per_device_train_batch_size 4 \
--per_device_eval_batch_size 4 \
--gradient_accumulation_steps 16 \
--evaluation_strategy "no" \
--save_strategy "steps" \
--save_steps 1000 \
--save_total_limit 2 \
--learning_rate 5e-3\
--weight_decay 0. \
--warmup_ratio 0.1 \
--lr_scheduler_type "cosine" \
--logging_steps 1 \
--num_train_epochs 2 \
--pattern "banded" \
--off_diag 16 \
--target_modules q_proj k_proj v_proj up_proj down_proj o_proj gate_proj \
--adapter_name "svft"
#SVFT_Random_d=16
export SAVE_PATH='./Gemma_2B_metamath40k_svft_16diag_topk'
CUDA_VISIBLE_DEVICES=0 python3 -m torch.distributed.launch --master_addr ${MASTER_ADDR} --master_port ${MASTER_PORT} --nproc_per_node=1 --use_env train_math.py \
--model_name_or_path $MODEL_PATH \
--data_path "./data/train/MetaMathQA-40K.json" \
--data_length 10000000 \
--bf16 True \
--output_dir $SAVE_PATH \
--per_device_train_batch_size 4 \
--per_device_eval_batch_size 4 \
--gradient_accumulation_steps 16 \
--evaluation_strategy "no" \
--save_strategy "steps" \
--save_steps 1000 \
--save_total_limit 2 \
--learning_rate 5e-3\
--weight_decay 0. \
--warmup_ratio 0.1 \
--lr_scheduler_type "cosine" \
--logging_steps 1 \
--num_train_epochs 2 \
--pattern "top_k" \
--off_diag 16 \
--target_modules q_proj k_proj v_proj up_proj down_proj o_proj gate_proj \
--adapter_name "svft"
#EVAL
#python eval_gsm8k.py --model './Gemma_2B_metamath40k_svft_16diag_random' --data_file ../MetaMath/data/test/GSM8K_test.jsonl
#python eval_math.py --model './Gemma_2B_metamath40k_svft_16diag_random' --data_file ../MetaMath/data/test/MATH_test.jsonl