Spaces:
Sleeping
Sleeping
export MODEL_PATH='google/gemma-2b' | |
export MASTER_ADDR="localhost" | |
export MASTER_PORT="1231" | |
export GLOO_SOCKET_IFNAME="lo" | |
export NCCL_SOCKET_IFNAME="lo" | |
#SVFT_PLAIN | |
export SAVE_PATH='./Gemma_2B_metamath40k_svft_plain' | |
CUDA_VISIBLE_DEVICES=0 python3 -m torch.distributed.launch --master_addr ${MASTER_ADDR} --master_port ${MASTER_PORT} --nproc_per_node=1 --use_env train_math.py \ | |
--model_name_or_path $MODEL_PATH \ | |
--data_path "./data/train/MetaMathQA-40K.json" \ | |
--data_length 10000000 \ | |
--bf16 True \ | |
--output_dir $SAVE_PATH \ | |
--per_device_train_batch_size 4 \ | |
--per_device_eval_batch_size 4 \ | |
--gradient_accumulation_steps 16 \ | |
--evaluation_strategy "no" \ | |
--save_strategy "steps" \ | |
--save_steps 1000 \ | |
--save_total_limit 2 \ | |
--learning_rate 5e-2\ | |
--weight_decay 0. \ | |
--warmup_ratio 0.1 \ | |
--lr_scheduler_type "cosine" \ | |
--logging_steps 1 \ | |
--num_train_epochs 2 \ | |
--pattern "banded" \ | |
--off_diag 0 \ | |
--target_modules q_proj k_proj v_proj up_proj down_proj o_proj gate_proj \ | |
--adapter_name "svft" | |
#SVFT_Random_d=16 | |
export SAVE_PATH='./Gemma_2B_metamath40k_svft_16diag_random' | |
CUDA_VISIBLE_DEVICES=0 python3 -m torch.distributed.launch --master_addr ${MASTER_ADDR} --master_port ${MASTER_PORT} --nproc_per_node=1 --use_env train_math.py \ | |
--model_name_or_path $MODEL_PATH \ | |
--data_path "./data/train/MetaMathQA-40K.json" \ | |
--data_length 10000000 \ | |
--bf16 True \ | |
--output_dir $SAVE_PATH \ | |
--per_device_train_batch_size 4 \ | |
--per_device_eval_batch_size 4 \ | |
--gradient_accumulation_steps 16 \ | |
--evaluation_strategy "no" \ | |
--save_strategy "steps" \ | |
--save_steps 1000 \ | |
--save_total_limit 2 \ | |
--learning_rate 5e-2\ | |
--weight_decay 0. \ | |
--warmup_ratio 0.1 \ | |
--lr_scheduler_type "cosine" \ | |
--logging_steps 1 \ | |
--num_train_epochs 2 \ | |
--pattern "random" \ | |
--off_diag 16 \ | |
--target_modules q_proj k_proj v_proj up_proj down_proj o_proj gate_proj \ | |
--adapter_name "svft" | |
#SVFT_Random_d=16 | |
export SAVE_PATH='./Gemma_2B_metamath40k_svft_16diag_banded' | |
CUDA_VISIBLE_DEVICES=0 python3 -m torch.distributed.launch --master_addr ${MASTER_ADDR} --master_port ${MASTER_PORT} --nproc_per_node=1 --use_env train_math.py \ | |
--model_name_or_path $MODEL_PATH \ | |
--data_path "./data/train/MetaMathQA-40K.json" \ | |
--data_length 10000000 \ | |
--bf16 True \ | |
--output_dir $SAVE_PATH \ | |
--per_device_train_batch_size 4 \ | |
--per_device_eval_batch_size 4 \ | |
--gradient_accumulation_steps 16 \ | |
--evaluation_strategy "no" \ | |
--save_strategy "steps" \ | |
--save_steps 1000 \ | |
--save_total_limit 2 \ | |
--learning_rate 5e-3\ | |
--weight_decay 0. \ | |
--warmup_ratio 0.1 \ | |
--lr_scheduler_type "cosine" \ | |
--logging_steps 1 \ | |
--num_train_epochs 2 \ | |
--pattern "banded" \ | |
--off_diag 16 \ | |
--target_modules q_proj k_proj v_proj up_proj down_proj o_proj gate_proj \ | |
--adapter_name "svft" | |
#SVFT_Random_d=16 | |
export SAVE_PATH='./Gemma_2B_metamath40k_svft_16diag_topk' | |
CUDA_VISIBLE_DEVICES=0 python3 -m torch.distributed.launch --master_addr ${MASTER_ADDR} --master_port ${MASTER_PORT} --nproc_per_node=1 --use_env train_math.py \ | |
--model_name_or_path $MODEL_PATH \ | |
--data_path "./data/train/MetaMathQA-40K.json" \ | |
--data_length 10000000 \ | |
--bf16 True \ | |
--output_dir $SAVE_PATH \ | |
--per_device_train_batch_size 4 \ | |
--per_device_eval_batch_size 4 \ | |
--gradient_accumulation_steps 16 \ | |
--evaluation_strategy "no" \ | |
--save_strategy "steps" \ | |
--save_steps 1000 \ | |
--save_total_limit 2 \ | |
--learning_rate 5e-3\ | |
--weight_decay 0. \ | |
--warmup_ratio 0.1 \ | |
--lr_scheduler_type "cosine" \ | |
--logging_steps 1 \ | |
--num_train_epochs 2 \ | |
--pattern "top_k" \ | |
--off_diag 16 \ | |
--target_modules q_proj k_proj v_proj up_proj down_proj o_proj gate_proj \ | |
--adapter_name "svft" | |
#EVAL | |
#python eval_gsm8k.py --model './Gemma_2B_metamath40k_svft_16diag_random' --data_file ../MetaMath/data/test/GSM8K_test.jsonl | |
#python eval_math.py --model './Gemma_2B_metamath40k_svft_16diag_random' --data_file ../MetaMath/data/test/MATH_test.jsonl | |