File size: 9,905 Bytes
6376749
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
# MetaMath: Bootstrap Your Own Mathematical Questions for Large Language Models

[![Code License](https://img.shields.io/badge/Code%20License-Apache_2.0-green.svg)](CODE_LICENSE)
[![Model Weight License](https://img.shields.io/badge/Model%20Weights%20License-LLaMA2-yellow)](MetaMath/LICENSE)
[![Python 3.9+](https://img.shields.io/badge/python-3.9+-blue.svg)](https://www.python.org/downloads/release/python-390/)

<p align="center">
πŸ€— <a href="https://huggingface.co/meta-math" target="_blank">HF Repo</a> β€’ πŸ“ƒ <a href="https://arxiv.org/abs/2309.12284" target="_blank">[MetaMath]</a><br>
</p>

<p align="center" width="100%">
<a ><img src="./imgs/metamath.svg" alt="MetaMath" style="width: 80%; min-width: 300px; display: block; margin: auto;"></a>
</p>


## News
- πŸ”₯ Our **MetaMath-Llemma-7B** model achieves  **30.0 pass@1** on the MATH Benchmarks, surpassing all the SOTA open-source LLM in 7B-13B scales! All the training scripts and the model are opened.
- πŸ”₯ Our **MetaMath-Mistral-7B** model achieves  **77.7 pass@1** on the [GSM8k Benchmarks](https://github.com/openai/grade-school-math), surpassing all the SOTA open-source LLM! All the training scripts and the model are opened.
- πŸ”₯ The full **MetaMathQA** dataset is now released in the huggingface [MetaMathQA](https://huggingface.co/datasets/meta-math/MetaMathQA/tree/main)!
- πŸ”₯ We released the GSM8K_Backward dataset is also released in the huggingface [GSM8K_Backward](https://huggingface.co/datasets/meta-math/GSM8K_Backward) to evaluate the reversal mathematical reasoning ability!

- πŸ”₯ Although the data augmentation for **MetaMathQA** is sourced from **ChatGPT 3.5**, Our **MetaMath-70B** model outperforms the closed-source LLMs **ChatGPT 3.5** on the GSM8K!

- πŸ”₯ Our **MetaMath-7B** model achieves  **66.5 pass@1** on the [GSM8k Benchmarks](https://github.com/openai/grade-school-math), **11.6** points higher than the SOTA open-source LLM!

- πŸ”₯ Our **MetaMath-7B** model achieves  **19.8 pass@1** on the [MATH Benchmarks](https://github.com/hendrycks/math), **9.1** points higher than the SOTA open-source LLM!



| Model | Checkpoint | Paper  | GSM8k | MATH  | License|

| ----- |------| ---- |------|-------| ----- |

| MetaMath-70B-V1.0 | πŸ€— <a href="https://huggingface.co/meta-math/MetaMath-70B-V1.0" target="_blank">HF Link</a> |  πŸ“ƒ <a href="https://arxiv.org/abs/2309.12284" target="_blank">[MetaMath]</a>| **82.3**  |  **26.6**	| <a href="https://ai.meta.com/resources/models-and-libraries/llama-downloads/" target="_blank">Llama 2  </a> |

| MetaMath-13B-V1.0 | πŸ€— <a href="https://huggingface.co/meta-math/MetaMath-13B-V1.0" target="_blank">HF Link</a> |  πŸ“ƒ <a href="https://arxiv.org/abs/2309.12284" target="_blank">[MetaMath]</a>| **72.3**  |  **22.4** | <a href="https://ai.meta.com/resources/models-and-libraries/llama-downloads/" target="_blank">Llama 2 </a> |

| MetaMath-7B-V1.0 | πŸ€— <a href="https://huggingface.co/meta-math/MetaMath-7B-V1.0" target="_blank">HF Link</a>  |  πŸ“ƒ <a href="https://arxiv.org/abs/2309.12284" target="_blank">[MetaMath]</a>| 	 **66.5**  |  **19.8** |  <a href="https://ai.meta.com/resources/models-and-libraries/llama-downloads/" target="_blank">Llama 2  </a>|

| MetaMath-Mistral-7B | πŸ€— <a href="https://huggingface.co/meta-math/MetaMath-Mistral-7B" target="_blank">HF Link</a>  |  πŸ“ƒ <a href="https://arxiv.org/abs/2309.12284" target="_blank">[MetaMath]</a>| 	 **77.7**  |  **28.2** |  <a href="http://www.apache.org/licenses/" target="_blank">Apache License 2.0  </a>|

| MetaMath-Llemma-7B | πŸ€— <a href="https://huggingface.co/meta-math/MetaMath-Llemma-7B" target="_blank">HF Link</a>  |  πŸ“ƒ <a href="https://arxiv.org/abs/2309.12284" target="_blank">[MetaMath]</a>| 	 **69.2**  |  **30.0** |  <a href="http://www.apache.org/licenses/" target="_blank">Apache License 2.0  </a>|

                                                                                                                                                                                                                                                                                                   

                                                                                                                                                                                                                                                                                                                                                                             



## Comparing MetaMath with the LLM models.



πŸ”₯ Comprehensive Results



| Model               | GSM8k Pass@1 | MATH Pass@1 |

|---------------------|--------------|-------------|

| MPT-7B              | 6.8          | 3.0         |

| Falcon-7B           | 6.8          | 2.3         |

| LLaMA-1-7B          | 11.0         | 2.9         |

| LLaMA-2-7B          | 14.6         | 2.5         |

| MPT-30B             | 15.2         | 3.1         |

| LLaMA-1-13B         | 17.8         | 3.9         |

| GPT-Neo-2.7B        | 19.5         | --          |

| Falcon-40B          | 19.6         | 2.5         |

| Baichuan-chat-13B   | 23.9         | --          |

| Vicuna-v1.3-13B     | 27.6         | --          |

| LLaMA-2-13B         | 28.7         | 3.9         |

| InternLM-7B         | 31.2         | --          |

| ChatGLM-2-6B        | 32.4         | --          |

| GPT-J-6B            | 34.9         | --          |

| LLaMA-1-33B         | 35.6         | 3.9         |

| LLaMA-2-34B         | 42.2         | 6.24        |

| RFT-7B              | 50.3         | --          |

| LLaMA-1-65B         | 50.9         | 10.6        |

| Qwen-7B             | 51.6         | --          |

| WizardMath-7B       | 54.9         | 10.7        |

| LLaMA-2-70B         | 56.8         | 13.5        |

| WizardMath-13B      | 63.9         | 14.0        |

| πŸ”₯ MetaMath-7B         | **66.5**     | **19.8**    |

| πŸ”₯ MetaMath-13B        | **72.3**     | **22.4**    |

| πŸ”₯ MetaMath-Mistral-7B | **77.7**     | **28.2**    |

| πŸ”₯ MetaMath-Llemma-7B  | **69.2**     | **30.0**    |

| WizardMath-70B      | 81.6         | 22.7        |

| πŸ”₯ MetaMath-70B        | **82.3**     | **26.6**    |



<h2 id="env">Quick Start</h2>



Clone Metamath and install the required packages:



```bash

git clone https://github.com/meta-math/MetaMath.git

cd MetaMath

pip install -r requirements.txt

```



If you encounter a Ray installation problem, please run:



```bash

pip install --upgrade ray

pip install --upgrade pyarrow

pip install pandas

```



<h2 id="Inference">Dataset Usage</h2>



Run the following command to load the data:



```python

from datasets import load_dataset
dataset = load_dataset("meta-math/MetaMathQA")

```





<h2 id="train">Training</h2>



you need to prepare the  llama-2 base model and our **MetaMathQA** dataset huggingface [MetaMathQA](https://huggingface.co/datasets/meta-math/MetaMathQA/tree/main)



```

bash run.sh

```

or



```

CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 python3 -m torch.distributed.launch --master_addr ${MASTER_ADDR} --master_port ${MASTER_PORT} --nproc_per_node=8 --use_env train_math.py \

    --model_name_or_path "meta-llama/Llama-2-7b-hf" \
    --data_path "path/to/metamathqa" \

    --data_length 10000000 \

    --bf16 True \

    --output_dir "path/to/save" \

    --num_train_epochs 3 \

    --per_device_train_batch_size 4 \

    --per_device_eval_batch_size 4 \

    --gradient_accumulation_steps 4 \

    --evaluation_strategy "no" \

    --save_strategy "steps" \

    --save_steps 1000 \

    --save_total_limit 2 \

    --learning_rate 2e-5 \

    --weight_decay 0. \

    --warmup_ratio 0.03 \

    --lr_scheduler_type "cosine" \

    --logging_steps 1 \

    --fsdp "full_shard auto_wrap" \

    --fsdp_transformer_layer_cls_to_wrap 'LlamaDecoderLayer' \

    --tf32 True

```


### Supervised fine-tuning

We supervised fine-tune MetaMath-7B with the following hyperparameters:

| Hyperparameter | LLaMA 2 7B |
|----------------|-------------|
| Batch size     | 128         |
| Learning rate  | 2e-5        |
| Epochs         | 3           |
| Max length     | 512         |
| LR scheduler   | cosine      |

<h2 id="evaluation">Evaluation</h2>

we use the vllm to help the fast generation:

```

python eval_gsm8k.py --model "path/to/save" --data_file ./data/test/GSM8K_test.jsonl

python eval_math.py --model "path/to/save" --data_file ./data/test/MATH_test.jsonl

```
where the "path/to/save" should be replaced by the finetuned model, you can also download our series of MetaMath models in huggingface:  
πŸ€— <a href="https://huggingface.co/meta-math/MetaMath-7B-V1.0" target="_blank">MetaMath 7B</a> πŸ€— <a href="https://huggingface.co/meta-math/MetaMath-13B-V1.0" target="_blank">MetaMath 13B</a> πŸ€— <a href="https://huggingface.co/meta-math/MetaMath-70B-V1.0" target="_blank">MetaMath 70B</a>

The inference prompt for our MetaMath is:
```

"Below is an instruction that describes a task. Write a response that appropriately completes the request.\n\n### Instruction:\n{instruction}\n\n### Response: Let's think step by step."

```

Thanks for the open source code of [WizardMath](https://github.com/nlpxucan/WizardLM/tree/main/WizardMath) and [RFT](https://github.com/OFA-Sys/gsm8k-ScRel/tree/main). Some of our codes are based on them.

<h2 id="citation">Citation</h2>
Please cite the paper if you refer to our model, code, data or paper from MetaMath.

```

@article{yu2023metamath,

  title={MetaMath: Bootstrap Your Own Mathematical Questions for Large Language Models},

  author={Yu, Longhui and Jiang, Weisen and Shi, Han and Yu, Jincheng and Liu, Zhengying and Zhang, Yu and Kwok, James T and Li, Zhenguo and Weller, Adrian and Liu, Weiyang},

  journal={arXiv preprint arXiv:2309.12284},

  year={2023}

}

```