Spaces:
Sleeping
Sleeping
Updated version 2.0
Browse files
app.py
CHANGED
@@ -2,10 +2,7 @@ import os
|
|
2 |
import streamlit as st
|
3 |
from transformers import BartTokenizer, TFBartForConditionalGeneration
|
4 |
|
5 |
-
# Suppress TensorFlow logging for errors only
|
6 |
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
|
7 |
-
|
8 |
-
# Load the model and tokenizer
|
9 |
model_name = 'facebook-bart-large-cnn'
|
10 |
tokenizer = BartTokenizer.from_pretrained(model_name)
|
11 |
model = TFBartForConditionalGeneration.from_pretrained(model_name)
|
@@ -13,19 +10,18 @@ model = TFBartForConditionalGeneration.from_pretrained(model_name)
|
|
13 |
def summarize(text, style):
|
14 |
input_length = len(tokenizer.encode(text, return_tensors='tf', max_length=1024, truncation=True)[0])
|
15 |
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
length_penalty = 1.0
|
21 |
elif style == 'Precise':
|
22 |
-
max_length = int(input_length * 0.
|
23 |
-
min_length = int(input_length * 0.
|
24 |
length_penalty = 1.2
|
25 |
-
else:
|
26 |
-
max_length = int(input_length * 0.
|
27 |
-
min_length = int(input_length * 0.
|
28 |
-
length_penalty = 1.
|
29 |
|
30 |
inputs = tokenizer.encode(text, return_tensors='tf', max_length=1024, truncation=True)
|
31 |
summary_ids = model.generate(
|
@@ -34,19 +30,20 @@ def summarize(text, style):
|
|
34 |
min_length=min_length,
|
35 |
length_penalty=length_penalty,
|
36 |
num_beams=4,
|
|
|
37 |
early_stopping=True
|
38 |
)
|
39 |
summary = tokenizer.decode(summary_ids[0], skip_special_tokens=True, clean_up_tokenization_spaces=True)
|
|
|
|
|
|
|
40 |
return summary
|
41 |
|
42 |
-
# Streamlit app
|
43 |
st.title('Text Summarizer')
|
44 |
user_input = st.text_area("Enter text to summarize:", "")
|
45 |
-
|
46 |
-
# Dropdown menu for summarization style
|
47 |
summary_style = st.selectbox(
|
48 |
'Choose summarization style:',
|
49 |
-
('
|
50 |
)
|
51 |
|
52 |
if st.button('Summarize'):
|
@@ -56,3 +53,5 @@ if st.button('Summarize'):
|
|
56 |
st.write(summary)
|
57 |
else:
|
58 |
st.write("Please enter some text to summarize.")
|
|
|
|
|
|
2 |
import streamlit as st
|
3 |
from transformers import BartTokenizer, TFBartForConditionalGeneration
|
4 |
|
|
|
5 |
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
|
|
|
|
|
6 |
model_name = 'facebook-bart-large-cnn'
|
7 |
tokenizer = BartTokenizer.from_pretrained(model_name)
|
8 |
model = TFBartForConditionalGeneration.from_pretrained(model_name)
|
|
|
10 |
def summarize(text, style):
|
11 |
input_length = len(tokenizer.encode(text, return_tensors='tf', max_length=1024, truncation=True)[0])
|
12 |
|
13 |
+
if style == 'Normal':
|
14 |
+
max_length = int(input_length * 0.6)
|
15 |
+
min_length = int(input_length * 0.5)
|
16 |
+
length_penalty = 1.5
|
|
|
17 |
elif style == 'Precise':
|
18 |
+
max_length = int(input_length * 0.45)
|
19 |
+
min_length = int(input_length * 0.35)
|
20 |
length_penalty = 1.2
|
21 |
+
else:
|
22 |
+
max_length = int(input_length * 0.4)
|
23 |
+
min_length = int(input_length * 0.3)
|
24 |
+
length_penalty = 1.0
|
25 |
|
26 |
inputs = tokenizer.encode(text, return_tensors='tf', max_length=1024, truncation=True)
|
27 |
summary_ids = model.generate(
|
|
|
30 |
min_length=min_length,
|
31 |
length_penalty=length_penalty,
|
32 |
num_beams=4,
|
33 |
+
no_repeat_ngram_size=3,
|
34 |
early_stopping=True
|
35 |
)
|
36 |
summary = tokenizer.decode(summary_ids[0], skip_special_tokens=True, clean_up_tokenization_spaces=True)
|
37 |
+
|
38 |
+
if not summary.endswith(('.', '!', '?')):
|
39 |
+
summary += '.'
|
40 |
return summary
|
41 |
|
|
|
42 |
st.title('Text Summarizer')
|
43 |
user_input = st.text_area("Enter text to summarize:", "")
|
|
|
|
|
44 |
summary_style = st.selectbox(
|
45 |
'Choose summarization style:',
|
46 |
+
('Normal', 'Precise', 'Accurate')
|
47 |
)
|
48 |
|
49 |
if st.button('Summarize'):
|
|
|
53 |
st.write(summary)
|
54 |
else:
|
55 |
st.write("Please enter some text to summarize.")
|
56 |
+
|
57 |
+
# End of program 2.0
|