sairamn's picture
Add app.py and requirements.txt
f4cb143
raw
history blame
850 Bytes
import streamlit as st
from transformers import BartTokenizer, TFBartForConditionalGeneration
model_name = 'facebook-bart-large-cnn'
tokenizer = BartTokenizer.from_pretrained(model_name)
model = TFBartForConditionalGeneration.from_pretrained(model_name)
def summarize(text):
inputs = tokenizer.encode(text, return_tensors='tf', max_length=1024, truncation=True)
summary_ids = model.generate(inputs, max_length=150, min_length=30, length_penalty=2.0, num_beams=4, early_stopping=True)
summary = tokenizer.decode(summary_ids[0], skip_special_tokens=True)
return summary
st.title('Text Summarizer')
user_input = st.text_area("Enter text to summarize:", "")
if st.button('Summarize'):
if user_input:
summary = summarize(user_input)
st.write(summary)
else:
st.write("Please enter some text to summarize.")