Spaces:
Sleeping
Sleeping
import streamlit as st | |
from transformers import BartTokenizer, TFBartForConditionalGeneration | |
# Load the model and tokenizer | |
model_path = 'facebook/bart-large-cnn' | |
tokenizer_path = 'facebook/bart-large-cnn' | |
tokenizer = BartTokenizer.from_pretrained(tokenizer_path) | |
model = TFBartForConditionalGeneration.from_pretrained(model_path) | |
def summarize_text(text): | |
inputs = tokenizer.encode('summarize: ' + text, return_tensors='tf', max_length=1024, truncation=True) | |
summary_ids = model.generate( | |
inputs, | |
max_length=150, | |
min_length=40, | |
length_penalty=2.0, | |
num_beams=4, | |
early_stopping=True | |
) | |
summary = tokenizer.decode(summary_ids[0], skip_special_tokens=True) | |
return summary | |
st.title("Text Summarization") | |
text = st.text_area("Enter text to summarize", height=200) | |
if st.button("Summarize"): | |
summary = summarize_text(text) | |
st.write("Summary:") | |
st.write(summary) |