Spaces:
Sleeping
Sleeping
commit @v-1
Browse files- app.py +411 -0
- requirements.txt +7 -0
app.py
ADDED
@@ -0,0 +1,411 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import pandas as pd
|
3 |
+
import matplotlib.pyplot as plt
|
4 |
+
import numpy as np
|
5 |
+
import calendar
|
6 |
+
import plotly.express as px
|
7 |
+
|
8 |
+
# Set page configuration
|
9 |
+
st.set_page_config(page_title="GCP Cost Optimization", layout="wide")
|
10 |
+
|
11 |
+
@st.cache_data
|
12 |
+
def load_data():
|
13 |
+
df = pd.read_csv('data.csv')
|
14 |
+
df['Usage Start Date'] = pd.to_datetime(df['Usage Start Date'], format="%Y-%m-%d %H:%M:%S", errors='coerce')
|
15 |
+
df = df.dropna(subset=['Usage Start Date'])
|
16 |
+
|
17 |
+
# Convert Network Data from Bytes to GB
|
18 |
+
df['Network Inbound Data (GB)'] = df['Network Inbound Data (Bytes)'] / (1024**3)
|
19 |
+
df['Network Outbound Data (GB)'] = df['Network Outbound Data (Bytes)'] / (1024**3)
|
20 |
+
df['Total Network Data (GB)'] = df['Network Inbound Data (GB)'] + df['Network Outbound Data (GB)']
|
21 |
+
|
22 |
+
# Define the thresholds - dictionary
|
23 |
+
thresholds = {
|
24 |
+
'CPU Utilization (%)': 20,
|
25 |
+
'Memory Utilization (%)': 30,
|
26 |
+
'Disk I/O Operations': 10,
|
27 |
+
'Network Data (GB)': 2
|
28 |
+
}
|
29 |
+
|
30 |
+
# Calculate underutilization metrics
|
31 |
+
df['Underutilized_CPU'] = np.maximum(thresholds['CPU Utilization (%)'] - df['CPU Utilization (%)'], 0)
|
32 |
+
df['Underutilized_Memory'] = np.maximum(thresholds['Memory Utilization (%)'] - df['Memory Utilization (%)'], 0)
|
33 |
+
df['Underutilized_Network'] = np.maximum(thresholds['Network Data (GB)'] - df['Total Network Data (GB)'], 0)
|
34 |
+
df['Underutilized_Quantity'] = np.where(
|
35 |
+
(df['Usage Quantity'] < thresholds['Disk I/O Operations']) & (df['Usage Unit'] == 'Requests'),
|
36 |
+
thresholds['Disk I/O Operations'] - df['Usage Quantity'],
|
37 |
+
0
|
38 |
+
)
|
39 |
+
|
40 |
+
# Calculate Overall Optimization Factor
|
41 |
+
underutilized_columns = ['Underutilized_Quantity', 'Underutilized_Network', 'Underutilized_Memory', 'Underutilized_CPU']
|
42 |
+
df['Overall_Optimization_Factor (%)'] = df[underutilized_columns].apply(
|
43 |
+
lambda x: x[x > 0].mean() if (x > 0).any() else 0,
|
44 |
+
axis=1
|
45 |
+
)
|
46 |
+
|
47 |
+
# Calculate Optimized Cost
|
48 |
+
df['Optimized Cost ($)'] = df['Rounded Cost ($)'] * (1 - df['Overall_Optimization_Factor (%)'] / 100)
|
49 |
+
|
50 |
+
return df
|
51 |
+
|
52 |
+
# Load dataset
|
53 |
+
df = load_data()
|
54 |
+
|
55 |
+
def format_number(value):
|
56 |
+
return '{:,.2f}'.format(value) # Format with commas
|
57 |
+
|
58 |
+
# Streamlit App
|
59 |
+
st.image("https://cognizant.scene7.com/is/content/cognizant/COG-Logo-2022-1?fmt=png-alpha", width=150)
|
60 |
+
st.title("Cloud Components Cost Optimization and Forecasting", anchor="header")
|
61 |
+
|
62 |
+
# Add a sidebar for navigation
|
63 |
+
section = st.sidebar.selectbox("Select Section", ["Overview", "Cost Optimization", "Cost Forecasting", "Cost Distribution Analysis", "Cost Optimization Suggestions", "Services Contributing to Cost"])
|
64 |
+
|
65 |
+
if section == "Overview":
|
66 |
+
st.header("Overview")
|
67 |
+
st.write("""
|
68 |
+
Welcome to the Cloud Components Cost Optimization and Forecasting application.
|
69 |
+
This tool helps you to manage and optimize your cloud costs effectively.
|
70 |
+
By leveraging this application, you can:
|
71 |
+
|
72 |
+
- **Analyze Cloud Costs:** Gain insights into your cloud spending, and identify high-cost services and regions.
|
73 |
+
- **Optimize Costs:** Discover underutilized resources and optimize your cloud expenditures.
|
74 |
+
- **Forecast Future Costs:** Predict future costs based on historical data and plan your budget accordingly.
|
75 |
+
- **Get Suggestions:** Receive actionable recommendations to reduce your cloud costs.
|
76 |
+
|
77 |
+
The application is designed to be user-friendly, allowing you to quickly navigate through different sections to gain insights and take action.
|
78 |
+
""")
|
79 |
+
st.write("""
|
80 |
+
### Key Features:
|
81 |
+
- **Cost Overview:** A summary of your total cloud costs before and after optimization.
|
82 |
+
- **Cost Optimization:** Detailed insights and suggestions to help you reduce your cloud expenses.
|
83 |
+
- **Cost Forecasting:** Predict future costs based on historical data with the Prophet model.
|
84 |
+
- **Cost Distribution Analysis:** Understand how your costs are distributed across various services and regions.
|
85 |
+
- **Optimization Suggestions:** Identifies costly services, high network usage, and underutilized resources.
|
86 |
+
|
87 |
+
### How to Use:
|
88 |
+
- Select a section from the sidebar to explore different features.
|
89 |
+
- Use the provided options to analyze and forecast costs.
|
90 |
+
- Review the insights and suggestions to optimize your cloud spending.
|
91 |
+
""")
|
92 |
+
|
93 |
+
elif section == "Cost Optimization":
|
94 |
+
st.header("Cost Optimization Summary")
|
95 |
+
|
96 |
+
# Input: Year Selection
|
97 |
+
year = st.selectbox("Select Year", sorted(df['Usage Start Date'].dt.year.unique()))
|
98 |
+
|
99 |
+
# Input: Month and Year
|
100 |
+
show_month_year = st.checkbox("Filter by Month and Year")
|
101 |
+
if show_month_year:
|
102 |
+
months = list(calendar.month_name)[1:]
|
103 |
+
selected_month_name = st.selectbox("Select Month", months)
|
104 |
+
month = months.index(selected_month_name) + 1
|
105 |
+
else:
|
106 |
+
month = None
|
107 |
+
|
108 |
+
@st.cache_data
|
109 |
+
def get_filtered_data(df, year, month=None):
|
110 |
+
if month:
|
111 |
+
return df[(df['Usage Start Date'].dt.year == year) & (df['Usage Start Date'].dt.month == month)]
|
112 |
+
else:
|
113 |
+
return df[df['Usage Start Date'].dt.year == year]
|
114 |
+
|
115 |
+
filtered_data = get_filtered_data(df, year, month)
|
116 |
+
|
117 |
+
total_cost_before = filtered_data['Rounded Cost ($)'].sum()
|
118 |
+
total_cost_after = filtered_data['Optimized Cost ($)'].sum()
|
119 |
+
cost_change_percentage = ((total_cost_before - total_cost_after) / total_cost_before) * 100
|
120 |
+
dollar_saving = total_cost_before - total_cost_after
|
121 |
+
inr_saving = dollar_saving * 85
|
122 |
+
|
123 |
+
if month:
|
124 |
+
st.markdown(f"**Total Cost Before Optimization for {selected_month_name}:** ${format_number(total_cost_before)}")
|
125 |
+
st.markdown(f"**Total Cost After Optimization for {selected_month_name}:** ${format_number(total_cost_after)}")
|
126 |
+
else:
|
127 |
+
st.markdown(f"**Total Cost Before Optimization for {year}:** ${format_number(total_cost_before)}")
|
128 |
+
st.markdown(f"**Total Cost After Optimization for {year}:** ${format_number(total_cost_after)}")
|
129 |
+
|
130 |
+
st.markdown(f"**Percentage Change in Cost:** {cost_change_percentage:.2f}%")
|
131 |
+
st.markdown(f"**Dollar Saving:** ${format_number(dollar_saving)}")
|
132 |
+
st.markdown(f"**INR Saving:** ₹{format_number(inr_saving)}")
|
133 |
+
|
134 |
+
@st.cache_data
|
135 |
+
def get_service_costs(filtered_data):
|
136 |
+
service_costs_before = filtered_data.groupby('Service Name')['Rounded Cost ($)'].sum().sort_values(ascending=False)
|
137 |
+
service_costs_after = filtered_data.groupby('Service Name')['Optimized Cost ($)'].sum().sort_values(ascending=False)
|
138 |
+
return pd.DataFrame({
|
139 |
+
'Before Optimization': service_costs_before,
|
140 |
+
'After Optimization': service_costs_after
|
141 |
+
}).fillna(0)
|
142 |
+
|
143 |
+
cost_comparison = get_service_costs(filtered_data)
|
144 |
+
|
145 |
+
if month:
|
146 |
+
st.subheader(f"Cost Before and After Optimization for {selected_month_name}")
|
147 |
+
else:
|
148 |
+
st.subheader(f"Cost Before and After Optimization by Service for {year}")
|
149 |
+
|
150 |
+
fig, ax = plt.subplots(figsize=(12, 8))
|
151 |
+
cost_comparison.plot(kind='barh', stacked=False, ax=ax, colormap='coolwarm')
|
152 |
+
ax.set_xlabel('Cost in Lakhs($)')
|
153 |
+
ax.legend(title='Cost Type')
|
154 |
+
st.pyplot(fig)
|
155 |
+
|
156 |
+
elif section == "Cost Forecasting":
|
157 |
+
st.header("Cost Forecasting")
|
158 |
+
|
159 |
+
@st.cache_data
|
160 |
+
def load_service_names():
|
161 |
+
return df['Service Name'].unique()
|
162 |
+
|
163 |
+
service_names = load_service_names()
|
164 |
+
service_name = st.selectbox("Select a Service to Forecast", service_names)
|
165 |
+
|
166 |
+
# Define the forecasting period (Jan 2024 to Dec 2025)
|
167 |
+
start_date = pd.to_datetime('2024-01-01')
|
168 |
+
end_date = pd.to_datetime('2025-12-31')
|
169 |
+
|
170 |
+
# Calculate the number of months to forecast
|
171 |
+
steps = (end_date.year - start_date.year) * 12 + (end_date.month - start_date.month) + 1
|
172 |
+
|
173 |
+
@st.cache_data
|
174 |
+
def prepare_service_data(service_name):
|
175 |
+
service_data = df[df['Service Name'] == service_name].copy()
|
176 |
+
service_data['Usage Start Date'] = pd.to_datetime(service_data['Usage Start Date'])
|
177 |
+
service_data.set_index('Usage Start Date', inplace=True)
|
178 |
+
monthly_costs = service_data['Rounded Cost ($)'].resample('ME').sum().reset_index()
|
179 |
+
monthly_costs.rename(columns={'Usage Start Date': 'ds', 'Rounded Cost ($)': 'y'}, inplace=True)
|
180 |
+
return monthly_costs
|
181 |
+
|
182 |
+
@st.cache_data
|
183 |
+
def forecast_costs(monthly_costs, steps):
|
184 |
+
if len(monthly_costs) < 12:
|
185 |
+
return None, None
|
186 |
+
|
187 |
+
# Calculate historical stats
|
188 |
+
historical_mean = monthly_costs['y'].mean()
|
189 |
+
historical_std = monthly_costs['y'].std()
|
190 |
+
historical_min = monthly_costs['y'].min()
|
191 |
+
historical_max = monthly_costs['y'].max()
|
192 |
+
|
193 |
+
# Generate forecast dates
|
194 |
+
last_date = monthly_costs['ds'].max()
|
195 |
+
forecast_dates = pd.date_range(start=last_date + pd.Timedelta(days=1), periods=steps, freq='ME')
|
196 |
+
|
197 |
+
# Generate forecasts based on historical mean with controlled deviations
|
198 |
+
np.random.seed(42) # for reproducibility
|
199 |
+
forecasts = np.random.normal(historical_mean, historical_std, steps)
|
200 |
+
|
201 |
+
# Clip forecasts to historical range
|
202 |
+
forecasts = np.clip(forecasts, historical_min, historical_max)
|
203 |
+
|
204 |
+
# Create forecast dataframe
|
205 |
+
forecast_df = pd.DataFrame({'ds': forecast_dates, 'yhat': forecasts})
|
206 |
+
forecast_df.set_index('ds', inplace=True)
|
207 |
+
|
208 |
+
# Combine historical data with forecast
|
209 |
+
combined_series = pd.concat([monthly_costs.set_index('ds')['y'], forecast_df['yhat']])
|
210 |
+
|
211 |
+
return combined_series, forecast_df['yhat']
|
212 |
+
|
213 |
+
if st.button("Forecast"):
|
214 |
+
monthly_costs = prepare_service_data(service_name)
|
215 |
+
|
216 |
+
if monthly_costs is None or len(monthly_costs) < 12:
|
217 |
+
st.error(f"Not enough data to perform forecasting for {service_name}.")
|
218 |
+
else:
|
219 |
+
combined_series, forecast = forecast_costs(monthly_costs, steps)
|
220 |
+
|
221 |
+
if forecast is not None:
|
222 |
+
st.subheader(f"Forecasted Costs for {service_name} (Jan 2024 to Dec 2025)")
|
223 |
+
|
224 |
+
# Scale to appropriate unit (e.g., thousands or millions)
|
225 |
+
scale_factor = 1000 # Change this to 1000000 for millions if needed
|
226 |
+
combined_series_scaled = combined_series / scale_factor
|
227 |
+
forecast_scaled = forecast / scale_factor
|
228 |
+
scale_label = "Thousands" if scale_factor == 1000 else "Millions"
|
229 |
+
|
230 |
+
# Display the forecast in a table
|
231 |
+
st.write(f"Monthly Forecast (in ${scale_label}):")
|
232 |
+
forecast_table = forecast_scaled.reset_index()
|
233 |
+
forecast_table.columns = ['Date', f'Forecasted Cost (${scale_label})']
|
234 |
+
forecast_table['Date'] = forecast_table['Date'].dt.strftime('%Y-%m-%d')
|
235 |
+
st.dataframe(forecast_table)
|
236 |
+
|
237 |
+
# Plot the results
|
238 |
+
fig, ax = plt.subplots(figsize=(12, 6))
|
239 |
+
ax.plot(combined_series.index, combined_series_scaled, label=f'Historical Costs (${scale_label})', color='blue')
|
240 |
+
ax.plot(forecast.index, forecast_scaled, label=f'Forecasted Costs (${scale_label})', color='red', linestyle='--')
|
241 |
+
ax.set_xlabel('Date')
|
242 |
+
ax.set_ylabel(f'Cost (${scale_label})')
|
243 |
+
ax.set_title(f'Cost Forecast for {service_name} (Jan 2024 to Dec 2025)', fontsize=14, fontweight='bold')
|
244 |
+
ax.legend()
|
245 |
+
plt.tight_layout()
|
246 |
+
st.pyplot(fig)
|
247 |
+
|
248 |
+
elif section == "Cost Distribution Analysis":
|
249 |
+
st.header("Cost Distribution Analysis")
|
250 |
+
st.write("Analyze how your costs are distributed across different cloud services and regions.")
|
251 |
+
|
252 |
+
# Add time range selection
|
253 |
+
time_range = st.radio("Select Time Range", ("Yearly", "Monthly"))
|
254 |
+
|
255 |
+
@st.cache_data
|
256 |
+
def filter_data_by_time(df, time_range, year=None, month=None):
|
257 |
+
if time_range == "Yearly" and year:
|
258 |
+
return df[df['Usage Start Date'].dt.year == year]
|
259 |
+
elif time_range == "Monthly" and year and month:
|
260 |
+
return df[(df['Usage Start Date'].dt.year == year) & (df['Usage Start Date'].dt.month == month)]
|
261 |
+
return df
|
262 |
+
|
263 |
+
@st.cache_data
|
264 |
+
def get_service_distribution(df):
|
265 |
+
return df.groupby('Service Name')['Rounded Cost ($)'].sum().sort_values(ascending=False)
|
266 |
+
|
267 |
+
@st.cache_data
|
268 |
+
def get_region_distribution(df):
|
269 |
+
if 'Region / Zone' in df.columns:
|
270 |
+
return df.groupby('Region / Zone')['Rounded Cost ($)'].sum().sort_values(ascending=False)
|
271 |
+
return None
|
272 |
+
|
273 |
+
# Time range selection UI
|
274 |
+
if time_range == "Yearly":
|
275 |
+
year = st.selectbox("Select Year", sorted(df['Usage Start Date'].dt.year.unique()))
|
276 |
+
filtered_df = filter_data_by_time(df, time_range, year=year)
|
277 |
+
elif time_range == "Monthly":
|
278 |
+
year = st.selectbox("Select Year", sorted(df['Usage Start Date'].dt.year.unique()))
|
279 |
+
month = st.selectbox("Select Month", range(1, 13), format_func=lambda x: calendar.month_name[x])
|
280 |
+
filtered_df = filter_data_by_time(df, time_range, year=year, month=month)
|
281 |
+
|
282 |
+
service_distribution = get_service_distribution(filtered_df)
|
283 |
+
|
284 |
+
st.subheader("Cost Distribution by Service")
|
285 |
+
|
286 |
+
# Create an interactive pie chart using Plotly
|
287 |
+
fig = px.pie(service_distribution, values=service_distribution.values, names=service_distribution.index,
|
288 |
+
title="Cost Distribution by Service", hole=0.2,
|
289 |
+
color_discrete_sequence=px.colors.qualitative.Plotly)
|
290 |
+
|
291 |
+
fig.update_traces(textinfo='percent+label', hoverinfo='label+value+percent', textposition='inside')
|
292 |
+
fig.update_layout(
|
293 |
+
showlegend=True,
|
294 |
+
legend_title_text="Services",
|
295 |
+
margin=dict(t=50, b=50, l=25, r=25),
|
296 |
+
width=900, # Set width of the pie chart
|
297 |
+
height=900 # Set height of the pie chart
|
298 |
+
)
|
299 |
+
|
300 |
+
# Display the Pie-Chart
|
301 |
+
st.plotly_chart(fig)
|
302 |
+
|
303 |
+
st.subheader("Cost Distribution by Region")
|
304 |
+
region_distribution = get_region_distribution(filtered_df)
|
305 |
+
if region_distribution is not None:
|
306 |
+
fig = px.bar(region_distribution, x=region_distribution.values, y=region_distribution.index,
|
307 |
+
orientation='h', title='Cost Distribution by Region', labels={'x': 'Cost ($)', 'y': 'Region / Zone'},
|
308 |
+
color_discrete_sequence=['lightblue'])
|
309 |
+
fig.update_layout(
|
310 |
+
width=800, # Set width of the bar chart
|
311 |
+
height=600 # Set height of the bar chart
|
312 |
+
)
|
313 |
+
st.plotly_chart(fig)
|
314 |
+
else:
|
315 |
+
st.error("The column 'Region / Zone' is not present in the dataset.")
|
316 |
+
|
317 |
+
# Display top N services table
|
318 |
+
st.subheader("Top Services by Cost")
|
319 |
+
top_n = st.slider("Select number of top services to display", min_value=1, max_value=20, value=10)
|
320 |
+
st.table(service_distribution.head(top_n).reset_index().rename(columns={'index': 'Service Name', 'Rounded Cost ($)': 'Cost ($)'}))
|
321 |
+
|
322 |
+
# Display total cost for the selected time range
|
323 |
+
total_cost = filtered_df['Rounded Cost ($)'].sum()
|
324 |
+
st.subheader(f"Total Cost for Selected Time Range: ${total_cost:,.2f}")
|
325 |
+
|
326 |
+
elif section == "Cost Optimization Suggestions":
|
327 |
+
st.header("Cost Optimization Suggestions")
|
328 |
+
st.write("### Suggestions for Reducing Cloud Costs")
|
329 |
+
st.write("""
|
330 |
+
For the analysis, we have used the mean values of the utilization rate which are lesser than the threshold
|
331 |
+
utilization rate. Additionally, here are some actionable suggestions to help you optimize your cloud expenditures:
|
332 |
+
""")
|
333 |
+
|
334 |
+
suggestions = [
|
335 |
+
("1. Right Forecasting", """
|
336 |
+
To ensure accurate cost forecasting, focus on:
|
337 |
+
- **Data Quality:** Maintain clean, consistent, and comprehensive historical data.
|
338 |
+
- **Model Selection:** Utilize time-series models like ARIMA, Prophet, or machine learning models like LSTM for better accuracy.
|
339 |
+
- **Seasonality and Trends:** Include seasonality and trend analysis to account for periodic fluctuations and long-term trends.
|
340 |
+
"""),
|
341 |
+
("2. Threshold Calculations", """
|
342 |
+
Calculate thresholds to determine underutilized resources:
|
343 |
+
- **Utilization Metrics:** Analyze resource utilization over time to set thresholds for identifying underutilized services.
|
344 |
+
- **Dynamic Adjustments:** Regularly adjust thresholds based on current usage patterns to avoid over-provisioning.
|
345 |
+
"""),
|
346 |
+
("3. Optimize CPU Utilization", """
|
347 |
+
To optimize CPU usage:
|
348 |
+
- **Right-sizing:** Adjust instance sizes based on actual CPU utilization to avoid over-provisioning.
|
349 |
+
- **Auto-scaling:** Implement auto-scaling policies to match CPU resources with demand.
|
350 |
+
- **Load Balancing:** Distribute workloads evenly across CPUs to maximize efficiency.
|
351 |
+
"""),
|
352 |
+
("4. Optimize Memory Utilization", """
|
353 |
+
For better memory optimization:
|
354 |
+
- **Memory Usage Monitoring:** Continuously monitor memory usage to identify bottlenecks or underutilization.
|
355 |
+
- **Memory-efficient Algorithms:** Use memory-efficient data structures and algorithms to reduce memory consumption.
|
356 |
+
- **Instance Right-sizing:** Select instances with appropriate memory capacity based on your application's requirements.
|
357 |
+
"""),
|
358 |
+
("5. Optimize Disk I/O Operations", """
|
359 |
+
To improve disk I/O performance:
|
360 |
+
- **Disk Type Selection:** Choose the right disk types (e.g., SSDs) for high I/O operations.
|
361 |
+
- **Data Partitioning:** Partition data across multiple disks to balance the I/O load.
|
362 |
+
- **Caching Strategies:** Implement caching mechanisms to reduce frequent disk access and improve speed.
|
363 |
+
"""),
|
364 |
+
("6. Optimize Usage Quantity", """
|
365 |
+
To optimize the usage quantity:
|
366 |
+
- **Usage Analysis:** Regularly analyze usage patterns to identify over-provisioned or underutilized services.
|
367 |
+
- **Decommission Unused Resources:** Remove or downscale services that are not in use.
|
368 |
+
- **Cost-efficient Resource Allocation:** Allocate resources based on actual demand to minimize unnecessary costs.
|
369 |
+
""")
|
370 |
+
]
|
371 |
+
|
372 |
+
for title, content in suggestions:
|
373 |
+
st.subheader(title)
|
374 |
+
st.write(content)
|
375 |
+
|
376 |
+
elif section == "Services Contributing to Cost":
|
377 |
+
st.header("Services Contributing to Cost")
|
378 |
+
|
379 |
+
analysis_type = "Month/Year"
|
380 |
+
|
381 |
+
@st.cache_data
|
382 |
+
def get_service_costs(data):
|
383 |
+
return data.groupby('Service Name')['Rounded Cost ($)'].sum().sort_values(ascending=False)
|
384 |
+
|
385 |
+
if analysis_type == "Month/Year":
|
386 |
+
months = list(calendar.month_name)[1:]
|
387 |
+
selected_month_name = st.selectbox("Select Month", months)
|
388 |
+
month = months.index(selected_month_name) + 1
|
389 |
+
|
390 |
+
year = st.selectbox("Select Year", df['Usage Start Date'].dt.year.unique())
|
391 |
+
|
392 |
+
selected_month_data = df[(df['Usage Start Date'].dt.month == month) & (df['Usage Start Date'].dt.year == year)]
|
393 |
+
|
394 |
+
service_costs = get_service_costs(selected_month_data)
|
395 |
+
|
396 |
+
st.subheader(f"Total Cost by Service")
|
397 |
+
st.bar_chart(service_costs)
|
398 |
+
|
399 |
+
top_n = st.number_input("Select Number of Top Services to Display", min_value=5, max_value=service_costs.shape[0], value=5)
|
400 |
+
|
401 |
+
st.subheader(f"Top {top_n} Services Contributing to Cost")
|
402 |
+
st.write(service_costs.head(top_n))
|
403 |
+
|
404 |
+
fig, ax = plt.subplots(figsize=(10, 6))
|
405 |
+
top_services = service_costs.head(top_n)
|
406 |
+
ax.barh(top_services.index, top_services.values, color='orange')
|
407 |
+
ax.set_xlabel('Cost ($)')
|
408 |
+
ax.set_title(f'Top {top_n} Services Contributing to Cost', fontsize=14, fontweight='bold')
|
409 |
+
st.pyplot(fig)
|
410 |
+
|
411 |
+
# Made by Sairam N
|
requirements.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
streamlit
|
2 |
+
pandas
|
3 |
+
numpy
|
4 |
+
statsmodels
|
5 |
+
matplotlib
|
6 |
+
openpyxl
|
7 |
+
plotly
|